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Notation
H subgroup of GL2(Z/NZ) satisfying det(H) = (Z/NZ)∗.
ΓH {A ∈ SL2(Z) : (A mod N) ∈ H ∩ SL2(Z/NZ)},

congruence subgroup associated to H.
XH modular curve associated to H (XH(C) ∼= ΓH\H∗).
JH Jacobian of H.

XH and JH have models over Spec(Z[1/N]),
so makes sense to talk about reduction at ` - N.

Ω(H) space of regular differentials on XH .
S2(ΓH) space of weight 2 cuspforms for ΓH .

There is an isomorphism

S2(ΓH) ∼= Ω(XH), f (q) 7→ f (q)
dq

q
.

In particular,

genus(XH) := dim(Ω(XH)) = dim(S2(ΓH)).



Eichler–Shimura

There is an action of the Hecke algebra on S2(ΓH). Let f1, . . . , fn be
representatives of Galois orbits of Hecke eigenforms.

Theorem (Eichler–Shimura)

Let f ∈ {f1, . . . , fn} be some representative of the Galois orbits of the
eigenforms.

Associated to f is an abelian variety Af /Q.

dim(Af ) = [Kf : Q] where Kf is the Hecke eigenvalue field of f .

Moreover, EndQ(Af ) is an order in Kf (we say that Af is of
GL2-type).

In particular rank(Af (Q)) is a multiple of [Kf : Q].

Finally,
JH ∼ Af1 ×Af2 × · · · × Afn ,

where ∼ denotes isogeny over Q.



Example J0(43)
Let us consider X0(43) and its Jacobian J0(43). i.e. we’re taking
H = B0(43) ⊂ GL2(F43) and ΓH = Γ0(43).
Using Magma or SAGE: eigenforms of S2(Γ0(43)) are

f = q − 2q2 − 2q3 + 2q4 − 4q5 + · · ·
g1 = q +

√
2 · q2 −

√
2 · q3 + (2−

√
2) · q5 + · · ·

g2 = q −
√

2 · q2 +
√

2 · q3 + (2 +
√

2) · q5 + · · ·
The Hecke eigenvalue field for f is Q. The eigenform f corresponds to a
dimension 1 abelian variety, which is the elliptic curve 43A1 with
Weierstrass model

Af : y2 + y = x3 + x2.

Note that g1, g2 form a single Galois orbit, with Hecke eigenvalue field
Q(
√

2) of degree 2. The abelian variety Ag1 = Ag2 has dimension 2.
Moreover,

J0(43) ∼ Af ×Ag1

has dimension 3 and so X0(43) has genus 3. What can we say about the
Mordell–Weil group J0(43)(Q)?



Kolyvagin–Logachev
Now let g ∈ {f1, . . . , fn}, let Kg be the Hecke eigenvalue field of g , and let
σ1, . . . , σd : Kg ↪→ C be the embeddings of C (here
d = [Kg : Q] = dim(Ag )). Let gi = σ(g) be the conjugates of g . Then we
have an equality of L-functions

L(Ag , s) =
d∏

i=1

L(gi , s) (g =
∑

anq
q =⇒ L(g , s) =

∑ an
ns

).

We have the following famous theorem, which is a version of weak BSD
for modular Jacobians.

Theorem (Kolyvagin and Logachev)

Suppose Ag is a factor of J0(M) for some M.

(i) If ords=1(L(gi , s)) = 0 for some i then ords=1(L(gi , s)) = 0 for all i
and rank(Ag (Q)) = 0.

(ii) If ords=1(L(gi , s)) = 1 for some i then ords=1(L(gi , s)) = 1 for all i
and rank(Ag (Q)) = dim(Ag ) = [Kg : Q].



L(Ag , s) =
d∏

i=1

L(gi , s) (g =
∑

anq
q =⇒ L(g , s) =

∑ an
ns

).

Theorem (Kolyvagin and Logachev)

Suppose Ag is a factor of J0(M) for some M.

(i) If ords=1(L(gi , s)) = 0 for some i then ords=1(L(gi , s)) = 0 for all i
and rank(Ag (Q)) = 0.

(ii) If ords=1(L(gi , s)) = 1 for some i then ords=1(L(gi , s)) = 1 for all i
and rank(Ag (Q)) = dim(Ag ) = [Kg : Q].

Fact. L(Ag , 1)/Ωg ∈ Q is a rational number, where Ωg is integral of the
Néron differential over Ag (R).

The modular symbols algorithm can in fact compute L(Ag , 1)/Ωg exactly.

Values L(r)(Ag , 1) can only be computed numerically for r ≥ 1.



X0(43) continued.

Recall

J0(43) ∼ Af ×Ag1 dim(Af ) = 1, dim(Ag1) = 2.

What can we say about the Mordell–Weil group J0(43)(Q)?

In fact
L(Af , 1)

ΩAf

= 0,
L(Ag1 , 1)

ΩAg

=
2

7
.

So we know that Ag1(Q) has rank 0 from the Kolyvagin–Logachev
theorem. What about Af (Q)?

We find that
L′(f , 1) = 0.34352 . . .

so by the Kolyvagin–Logachev theorem, Af (Q) has rank 1. Hence
J0(43)(Q) has rank 1.



Injectivity of Torsion

Let A be an abelian variety over Q. We know A(Q)tors is finite.

Let p be a prime of good reduction for A. Then we have a natural
homomorphism

redp : A(Q)→ A(Fp), P 7→ P̃.

Theorem (Katz)

Let A be an abelian variety over Q. Let p ≥ 3 be a prime of good
reduction. Then redp is injective when restricted to the torsion subgroup
A(Q)tors.



X0(31) and X1(31)

Let’s consider J0(31) instead. There is only one Galois orbit of eigenforms
of weight 2 for Γ0(31):

f1 = q + αq2 − 2αq3 + (α− 1)q4 + q5 + · · · , α =
1 +
√

5

2

f2 = q + βq2 − 2βq3 + (β − 1)q4 + q5 + · · · , β =
1−
√

5

2
.

∴ X0(31) has genus 2.

And J0(31) is a simple 2-dimensional abelian variety.

We find that

L(J0(31), 1)/Ω = 2/5, ∴ rank(J0(31)(Q)) = 0.



Objective. Use fact rank(J0(31)(Q)) = 0 to show that are no elliptic
curves over Q with a point of order 31.

Work by contradiction. Suppose E/Q has a Q-rational point Q of order
31. Then P = [(E ,Q)] is a non-cuspidal rational point P ∈ X1(31)(Q).

We consider this commutative diagram.

X1(31)(Q)
π−−−−→ X0(31)(Q) −−−−→ X (1)(Q)y y y

X1(31)(F3) −−−−→ X0(31)(F3) −−−−→ X (1)(F3).

Note that π(P) = [(E , 〈Q〉)].



Assumption: E/Q has a point Q of order 31.

Question: Can E has good reduction at 3? Suppose it does. Then, by the
injectivity of torion, E (F3) has a point of order 31, which is impossible
because #E (F3) ≤ 7 by the Hasse–Weil bounds.
∴ E cannot have good reduction at 3.

Question: Can E have potentially good reduction at 3? Suppose it does.
We consider the filtration

E (Q3) ⊃ E0(Q3) ⊃ E1(Q3) ⊃ E2(Q3) · · ·

Theory of the formal group tells us E1(Q3) ∼= Z3 which has no torsion.
Moreover,

[E (Q3) : E0(Q3)] ≤ 4, [E0(Q3) : E1(Q3)] = #Ẽns(F3) = 3

as E has additive reduction.
∴ E (Q3) does not have 31 torsion. Contradiction.



Assumption: E/Q has a point Q of order 31.
∴ E has potentially multiplicative reduction at 3.

∴ ord3(j(E )) < 0.

Recall P = [(E ,Q)] ∈ X1(31)(Q), π(P) = [(E , 〈Q〉)] ∈ X0(31)(Q) and

X1(31)(Q)
π−−−−→ X0(31)(Q) −−−−→ X (1)(Q)y y y

X1(31)(F3) −−−−→ X0(31)(F3) −−−−→ X (1)(F3).

ord3(j(E )) < 0 =⇒ image of P in in X (1)(F3) is the cusp.

∴ π(P) ≡ c (mod 3) c ∈ {cusps of X0(31)}.

Consider [π(P)− c] ∈ J0(31)(Q).

This is a torsion point as J0(31)(Q) has rank 0.



Recall P = [(E ,Q)] ∈ X1(31)(Q), π(P) = [(E , 〈Q〉)] ∈ X0(31)(Q) and

X1(31)(Q)
π−−−−→ X0(31)(Q) −−−−→ X (1)(Q)y y y

X1(31)(F3) −−−−→ X0(31)(F3) −−−−→ X (1)(F3).

ord3(j(E )) < 0 =⇒ image of P in in X (1)(F3) is the cusp.

∴ π(P) ≡ c (mod 3) c ∈ {cusps of X0(31)}.

Consider [π(P)− c] ∈ J0(31)(Q). This is a torsion point as J0(31)(Q) has
rank 0.

But ˜[π(P)− c] = 0 ∈ J0(31)(F3). By injectivity of reduction modulo 3
on torsion [π(P)− c] = 0 ∈ J0(31)(Q). ∴ π(P) = c .

∴ X1(31)(Q) ⊂ {cusps}.



We only needed the fact that the point comes from X1(31) to make
sure it reduces to a cusp modulo 3.

In fact if R ∈ X0(31)(Q) reduces to a cusp modulo any prime p 6= 2,
31 then R must equal that cusp, by the above argument.

i.e. if R ∈ X0(31)(Q) then j(R) ∈ Z[1/62]. So problem of
determining the rational points on X0(31) is essentially reduced to a
problem about integral points.

Determining X0(31)(Q) is easier if we know the whole of J0(31)(Q).

Theorem (Mazur)

Let p be a prime. Then

J0(p)(Q)tors = (Z/dpZ) · [c1 − c2], dp = num

(
p − 1

12

)
where c1, c2 are the two cusps of X0(p).



J0(31)(Q)

Theorem (Mazur)

Let p be a prime. Then

J0(p)(Q)tors = (Z/dpZ) · [c1 − c2], dp = num

(
p − 1

12

)
where c1, c2 are the two cusps of X0(p).

In our case J0(31)(Q) =
Z

5Z
· [c1 − c2].

Goal. Determine X0(31)(Q).

Let Q ∈ X0(31)(Q). Then [Q − c2] = n · [c1 − c2] for n = 0, 1, . . . , 4.

Q ∼ n · c1 + (1− n) · c2 for n ∈ {0, . . . , 4}.

If n = 0 then Q = c2 and n = 1 then Q = c1. What about
n = 2, 3, 4? Write Dn = c1 + (1− n)c2.

∴ Q ∼ Dn. i.e. Q = Dn + div(f ) where f ∈ Q(X0(31))∗.



In our case J0(31)(Q) =
Z

5Z
· [c1 − c2].

Goal. Determine X0(31)(Q).

Let Q ∈ X0(31)(Q). Then [Q − c2] = n · [c1 − c2] for n = 0, 1, . . . , 4.

Q ∼ n · c1 + (1− n) · c2 for n ∈ {0, . . . , 4}.

If n = 0 then Q = c2 and n = 1 then Q = c1. What about
n = 2, 3, 4? Write Dn = c1 + (1− n)c2.

∴ Q ∼ Dn. i.e. Q = Dn + div(f ) where f ∈ Q(X0(31))∗.

f ∈ L(Dn). To compute Riemann–Roch space need a model.

A model for X0(31) was worked out by Galbraith:

X0(31) : y2 = x6 − 8x5 + 6x4 + 18x3 − 11x2 − 14x − 3︸ ︷︷ ︸
h

.

Here c1, c2 are the two points at ∞ on this model. We find that
dim(L(Dn)) = 1, 1, 0, 0, 0 for n = 0, 1, 2, 3, 4 respectively. Thus there is
no point Q ∼ Dn for n = 2, 3, 4. Hence X0(31)(Q) = {c1, c2}. In
particular, there are no elliptic curves over Q with a 31-isogeny.



Sketch of Mazur’s Theorem for X1(p)

Defn. A morphism of schemes θ : X → Y over Spec(Z[1/p]) is a formal
immersion at x ∈ X (Q) if the induced map

ÔY ,f (x) → ÔX ,x

is surjective.

Remark. Let q 6= p be a prime. Let

resq(x) := {x ′ ∈ X (Qq) : x ′ ≡ x (mod q)}

which is called the q-adic residue disc of x . If θ is a formal immersion at x
then the map

θ : resq(x)→ Y (Qq)

is an injection.



Proposition

Let Y = A be an abelian variety such that A(Q) has rank 0. Let
θ : X → A be a morphism over Spec(Z[1/p]) that is formal immersion at
x ∈ X (Q). Then

X (Q) ∩ resq(x) = {x}

for all primes q /∈ {2, p}.

Proof.

Let x ′ ∈ X (Q) ∩ resq(x).

Then [x ′ − x ] reduce to 0 modulo q.

Thus θ([x ′ − x ]) is an element of A(Q) that reduces to 0 modulo q.

But A(Q) is torsion. By the injectivity of torsion θ([x ′ − x ]) = 0.
Thus θ(x ′) = θ(x).

However, as θ is a formal immersion at x , and x ′ belong to resq(x) we
have x = x ′.



Mazur’s Theorem for X1(p)

Theorem

Let p ≥ 11 prime. Then there is no elliptic curve E/Q with a rational
point of order p. Equivalently, X1(p)(Q) ⊂ {cusps}.

Sketch.

Suppose z ∈ X1(p)(Q) is not a cusp.

Then z = [(E ,P)] where E is an elliptic curve defined over Q and P
is a rational point of order p.

Then E has potentially multiplicative reduction at 3.

Let y = π(z) where π : X1(p)→ X0(p) is the degeneracy map. In
particular z reduces mod 3 to one of the cusps on X0.

The atkin-Lehner involution swaps the cusps. Thus we can suppose
that y reduces to the infinity cusp on X0 which we denote by
∞ ∈ X0(p)(Q).



Sketch.

Suppose z ∈ X1(p)(Q) is not a cusp.

Then z = [(E ,P)] where E is an elliptic curve defined over Q and P
is a rational point of order p.

Then E has potentially multiplicative reduction at 3.

Let y = π(z) where π : X1(p)→ X0(p) is the degeneracy map. In
particular z reduces mod 3 to one of the cusps on X0.

The atkin-Lehner involution swaps the cusps. Thus we can suppose
that y reduces to the infinity cusp on X0 which we denote by
∞ ∈ X0(p)(Q).

We let Je(p) be the largest quotient of J that has analytic rank 0.
This Merel’s winding quotient. We know by Kolyvagin–Logachev
that this has rank 0. We take θ to be the map
X0(p)→ J0(p)→ Je(p).

Highly non-trivial fact: this is a formal immersion at ∞. Now

y ∈ res3(∞) ∩ X0(3)(Q).

Hence by previous proposition y =∞. Thus z is a cusp.



Other modular curves

Proofs of
I Mazur’s theorem for X0(p);
I Merel’s Uniform Boundedness theorem;
I the theorem of Bilu, Parent and Rebolledo for X+

s (p);

all crucially depend on the existence of a rank 0 quotient of the
modular Jacobian.

However, for X+
ns(p) it is known that every factor of the Jacobian has

odd analytic rank, and so assuming BSD has non-zero rank. This is
the reason why Serre’s uniformity conjecture is still an open problem.


