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Notation
H subgroup of GLy(Z/NZ) satisfying det(H) = (Z/NZ)*.
My {A€SLy(Z) : (A mod N) € HNSLx(Z/NZ)},
congruence subgroup associated to H.
X modular curve associated to H (Xn(C) = Ty\H*).
Jy Jacobian of H.
X and Jy have models over Spec(Z[1/N]),
so makes sense to talk about reduction at £t N.
Q(H)  space of regular differentials on Xp.
S2(Ty) space of weight 2 cuspforms for I'yy.

There is an isomorphism

So(TH) = QXuH),  f(q) = f(q)—

In particular,

genus(XH) = dlm(Q(XH)) = dlm(Sz(FH))



Eichler—=Shimura

There is an action of the Hecke algebra on S>(I'y). Let f1,...,f, be
representatives of Galois orbits of Hecke eigenforms.

Theorem (Eichler-Shimura)

Let f € {f,...,f,} be some representative of the Galois orbits of the
eigenforms.

e Associated to f is an abelian variety Af/Q.
o dim(Af) = [Kr : Q] where K¢ is the Hecke eigenvalue field of f.
@ Moreover, Endg(.Af) is an order in K¢ (we say that As is of
GLy-type).
o In particular rank(Af(Q)) is a multiple of [K¢ : Q).
Finally,
JH ~ Afl XAf2 X X.Afn,

where ~ denotes isogeny over Q.




Example Jy(43)

Let us consider Xp(43) and its Jacobian Jp(43). i.e. we're taking

H= 80(43) C GL2(]F43) and [y = F0(43).

Using Magma or SAGE: eigenforms of S»(I9(43)) are

f=q—-2¢°—2¢° +2¢* —4¢° + -

B1=q+V2-@-V2-@+(2-V2)- >+
£2=9-V2-@+V2-@P+(2+V2) ¢+

The Hecke eigenvalue field for f is Q. The eigenform f corresponds to a

dimension 1 abelian variety, which is the elliptic curve 43A1 with
Weierstrass model

Ar -y 4y =x3+x2
Note that g1, g» form a single Galois orbit, with Hecke eigenvalue field

Q(V/2) of degree 2. The abelian variety Az = A, has dimension 2.
Moreover,

Jo(43) ~ Af X Ag1
)

has dimension 3 and so Xp(43) has genus 3. What can we say about the
Mordell-Weil group Jo(43)(Q)?



Kolyvagin—Logachev

Now let g € {f1,...,fp}, let Kg be the Hecke eigenvalue field of g, and let
01,...,04 : Kg = C be the embeddings of C (here

d = [K; : Q] =dim(Ag)). Let gi = o(g) be the conjugates of g. Then we
have an equality of L-functions

d

L(Ag,s) = H L(gi,s) (&= Z anq? = L(g,s) = Z an

ns’
i=1

We have the following famous theorem, which is a version of weak BSD
for modular Jacobians.
Theorem (Kolyvagin and Logachev)

Suppose Ag is a factor of Jo(M) for some M.
(i) Ifords—1(L(gi,s)) =0 for some i then ords—1(L(gi,s)) =0 for all i
and rank(Ag(Q)) = 0.
(i) Ifords=1(L(gi,s)) =1 for some i then ords—1(L(gi,s)) =1 for all i
and rank(A;(Q)) = dim(Ag) = [K, : Q).




LAg ) =] Lens) (8= ana" = Lig.s)=D_ %),

Theorem (Kolyvagin and Logachev)
Suppose Ag is a factor of Jo(M) for some M.
(i) Ifords=1(L(gi,s)) = 0 for some i then ords—1(L(gi,s)) =0 for all i
and rank(Ag(Q)) = 0.
(ii) Ifords—1(L(gi,s)) =1 for some i then ords—1(L(gi,s)) =1 for all i
and rank(Ag(Q)) = dim(Ag) = [Kg : Q].

Fact. L(Ag,1)/Qg € Q is a rational number, where Q, is integral of the
Néron differential over A, (R).

The modular symbols algorithm can in fact compute L(.Ag, 1)/, exactly.

Values L(r)(.Ag7 1) can only be computed numerically for r > 1.



Xo(43) continued.
Recall
Jo(43) ~ Af x Ag dim(Af) =1, dim(Ag) =2.
What can we say about the Mordell-Weil group Jo(43)(Q)?
In fact

L(Af, 1)
Qu,

- Qu 7

g

So we know that A, (Q) has rank 0 from the Kolyvagin—Logachev
theorem. What about A¢(Q)?

We find that
L'(f,1) =0.34352...

so by the Kolyvagin—Logachev theorem, Af(Q) has rank 1. Hence
Jo(43)(Q) has rank 1.



Injectivity of Torsion

Let A be an abelian variety over Q. We know A(Q)ors is finite.

Let p be a prime of good reduction for A. Then we have a natural
homomorphism

red, : AQ) — A(F,), P P.

Theorem (Katz)

Let A be an abelian variety over Q. Let p > 3 be a prime of good
reduction. Then red, is injective when restricted to the torsion subgroup

A(Q)tors-




X0(3].) and X1(31)

Let's consider Jy(31) instead. There is only one Galois orbit of eigenforms
of weight 2 for o(31):

1+5
fi=q+ad®—208+(a-1)g"+¢°+---, a= 2xf
1-v5
h=q+8q" =28 +(B-1)a" +a°+-,  B=-—F.

.. Xo(31) has genus 2.

And Jp(31) is a simple 2-dimensional abelian variety.

We find that
L(H(31),1)/Q = 2/5, . rank(J(31)(Q)) = 0.



Objective. Use fact rank(Jo(31)(Q)) = 0 to show that are no elliptic
curves over Q with a point of order 31.

Work by contradiction. Suppose E/Q has a Q-rational point @ of order
31. Then P = [(E, Q)] is a non-cuspidal rational point P € X;(31)(Q).

We consider this commutative diagram.

X(31)(@) —— %EB1N@Q@) — X1)(Q)

| l |

X1(31)(F3) —— Xo(31)(F3) —— X(1)(F3).

Note that 7(P) = [(E, (Q))].



Assumption: E/Q has a point Q of order 31.

Question: Can E has good reduction at 37 Suppose it does. Then, by the
injectivity of torion, E(F3) has a point of order 31, which is impossible
because #E(F3) < 7 by the Hasse—Weil bounds.

E cannot have good reduction at 3.

Question: Can E have potentially good reduction at 37 Suppose it does.
We consider the filtration

E(Qs3) D Eo(Q3) D E1(Q3) D E2(Q3) - -

Theory of the formal group tells us E1(Q3) = Z3 which has no torsion.
Moreover,

[E(Qs3) : Eo(Q3)] < 4, [Eo(Qs3) : E1(Q3)] = #Ens(F3) =3

as E has additive reduction.
E(Q3) does not have 31 torsion. Contradiction.



Assumption: E/Q has a point Q of order 31.
E has potentially multiplicative reduction at 3.

ords(j(E)) < 0.

Recall P = [(E, Q)] € X1(31)(Q), m(P) = [(E, (®))] € Xo(31)(Q) and
X1(31)(Q) —— X(31)(Q) —— X(1)(Q)

l l |

X1(31)(F3) —— Xo(31)(F3) —— X(1)(F3).
ord3(j(E)) <0 = image of P in in X(1)(F3) is the cusp.

S.m(P)=c (mod 3) ¢ € {cusps of Xp(31)}.

Consider [7(P) — c] € Jo(31)(Q).

This is a torsion point as Jp(31)(Q) has rank 0.



Recall P = [(E, Q)] € X1(31)(Q), 7(P) = [(E, (Q))] € Xo(31)(Q) and

X1(31)(Q) —— X(31)(Q) —— X(1)(Q)

l l |

X1(31)(F3) —— Xo(31)(F3) —— X(1)(F3).
ord3(j(E)) <0 = image of P in in X(1)(F3) is the cusp.

s.m(P)=c (mod 3) ¢ € {cusps of Xp(31)}.

Consider [m(P) — c] € Jo(31)(Q). This is a torsion point as Jy(31)(Q) has
rank 0.

But [7(P) — c] = 0 € Jo(31)(FF3). By injectivity of reduction modulo 3
on torsion [7(P) — ¢c] =0 € J(31)(Q). s.m(P)=c.

- X1(31)(Q) C {cusps}.



@ We only needed the fact that the point comes from X;(31) to make
sure it reduces to a cusp modulo 3.

o In fact if R € Xo(31)(Q) reduces to a cusp modulo any prime p # 2,
31 then R must equal that cusp, by the above argument.

e ie. if R € Xp(31)(Q) then j(R) € Z[1/62]. So problem of
determining the rational points on Xp(31) is essentially reduced to a
problem about integral points.

o Determining Xp(31)(Q) is easier if we know the whole of Jy(31)(Q).

Theorem (Mazur)
Let p be a prime. Then

-1

Jo(P)Q)iors = (Z/dpZ) - [c1 — 2], dp =num <plZ>

where c1, ¢ are the two cusps of Xo(p).




5(31)(Q)
Theorem (Mazur)

Let p be a prime. Then

() Qi = (E/,2) o1~ ), dp=mum (P22

where c1, ¢, are the two cusps of Xo(p).

In our case H(31)(Q) = Z a1 — .

Goal. Determine Xp(31)(Q).
o Let Q € Xp(31)(Q). Then [Q — ] =n-[c1 — ] for n=0,1,.
@ Q~n-ci+(1—n)-cforne{0,...,4}.

@ If n=0then Q@ = ¢ and n =1 then @ = ¢;. What about
n=2,3,47 Write D, = c1 + (1 — n)ca.

@ .. Q~ Dy ie. Q=D,+div(f) where f € Q(Xp(31))*.



Z
In our case JH(31)(Q) = 7

Goal. Determine Xp(31)(Q).

a1 — .

o Let Q € Xo(31)(Q). Then [Q — ] =n-[c1 — ] for n=0,1,...

@ Q~n-c1+(1—n) cforne{0,...,4}.

o If n=0then Q@ = ¢ and n =1 then Q@ = ¢;. What about
n=2,3,47 Write D, = ¢c1 + (1 — n)cs.

. Q~ Dy ie. Q= D,+div(f) where f € Q(Xp(31))".

o f € L(Dy). To compute Riemann—Roch space need a model.

A model for Xp(31) was worked out by Galbraith:

Xo(31) : y?=x%—8x%+6x* +18x3 — 11x% — 14x — 3.

h

Here c1, ¢ are the two points at oo on this model. We find that

, 4.

dim(L(D,))=1,1,0,0,0 for n=0,1,2,3,4 respectively. Thus there is

no point @ ~ D, for n =2, 3, 4. Hence Xp(31)(Q) = {c1, }. In
particular, there are no elliptic curves over Q with a 31-isogeny.



Sketch of Mazur’'s Theorem for Xi(p)

Defn. A morphism of schemes 6 : X — Y over Spec(Z[1/p]) is a formal
immersion at x € X(Q) if the induced map

@Y,f(x) - @x,x
is surjective.
Remark. Let g # p be a prime. Let
resq(x) = {X' € X(Qq) : X' =x (mod q)}

which is called the g-adic residue disc of x. If 8 is a formal immersion at x

then the map
6 : resq(x) = Y(Qq)

is an injection.



Proposition

Let Y = A be an abelian variety such that A(Q) has rank 0. Let
0 : X — A be a morphism over Spec(Z[1/p]) that is formal immersion at
x € X(Q). Then

X(Q) Nresq(x) = {x)
for all primes q ¢ {2, p}.

Proof.
o Let X' € X(Q) N resq(x).
@ Then [x" — x] reduce to 0 modulo g.
Thus 6([x" — x]) is an element of A(Q) that reduces to 0 modulo g.
But A(Q) is torsion. By the injectivity of torsion ([x' — x]) = 0.
Thus 6(x") = 0(x).
@ However, as 0 is a formal immersion at x, and x’ belong to resq(x) we
have x = x'.

Ol




Mazur's Theorem for Xi(p)

Theorem

Let p > 11 prime. Then there is no elliptic curve E/Q with a rational
point of order p. Equivalently, X1(p)(Q) C {cusps}.

Sketch.
@ Suppose z € X1(p)(Q) is not a cusp.

@ Then z = [(E, P)] where E is an elliptic curve defined over Q and P
is a rational point of order p.

@ Then E has potentially multiplicative reduction at 3.

Let y = m(z) where 7 : X1(p) — Xo(p) is the degeneracy map. In
particular z reduces mod 3 to one of the cusps on Xp.

The atkin-Lehner involution swaps the cusps. Thus we can suppose
that y reduces to the infinity cusp on Xy which we denote by

00 € Xo(p)(Q).



Sketch.
@ Suppose z € X1(p)(Q) is not a cusp.
@ Then z = [(E, P)] where E is an elliptic curve defined over Q and P
is a rational point of order p.
@ Then E has potentially multiplicative reduction at 3.
Let y = m(z) where 7 : X1(p) — Xo(p) is the degeneracy map. In
particular z reduces mod 3 to one of the cusps on Xp.

The atkin-Lehner involution swaps the cusps. Thus we can suppose
that y reduces to the infinity cusp on Xy which we denote by

00 € Xo(p)(Q)-

@ We let Jo(p) be the largest quotient of J that has analytic rank 0.
This Merel’s winding quotient. We know by Kolyvagin—Logachev
that this has rank 0. We take 6 to be the map
Xo(p) = Jo(p) = Je(p)-

@ Highly non-trivial fact: this is a formal immersion at co. Now

y € res3(00) N Xp(3)(Q).

Hence by previous proposition y = co. Thus z is a cusp. []



Other modular curves

@ Proofs of
» Mazur's theorem for Xo(p);
» Merel's Uniform Boundedness theorem;
» the theorem of Bilu, Parent and Rebolledo for X" (p);
all crucially depend on the existence of a rank 0 quotient of the
modular Jacobian.
e However, for XL(p) it is known that every factor of the Jacobian has
odd analytic rank, and so assuming BSD has non-zero rank. This is
the reason why Serre’s uniformity conjecture is still an open problem.



