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Theorem (Jarvis and Manoharmayum 2004 )
Semistable elliptic curves over Q(v/2) and Q(+/17) are modular.
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Prove Your Own Modularity Theorem

@ K totally real number field
e Gk := Gal(Q/K)
e E/K elliptic curve defined over K

If p is a prime, denote by
Pep + Gk — Aut(E[p]) = GLo(F))
the representation giving the action of Gk on the p-torsion of E.
Definition
We say pg ,, is modular if there exists a Hilbert cuspidal eigenform § over

K of parallel weight 2, and a place @ | p of Q such that

—SS —SS
PE,p ~ Pfw-

Fact

E modular = pg , modular. (Modularity lifting is reversing the arrow.)




Breuil and Diamond (2013)—a modularity lifting theorem

Théoréme 3.2.2. — Supposons p > 2, 7 : Gal@/F) — GLa(kg) modu-
laire, PlGag r i) wréductible et, sip =5, Uimage de p(Gal (Q/F(¥1))) dans
PCLl(kE) non zsamar]ih(’ a PSLZ(JFz,) Soit ¥ : Gal(Q/F) — E* un caractére
s-ensemble de I
s finies
divisant p et Les places o1 ﬁ ou sam‘, mmlﬁes Pour (haun vesS,
un type de Weil-Deligne en v et pour chaque v € T U {vfp, N, # 0},
T, Supposons que, pour chaque v € S,
F,) = GLy(E) tel que :

Plaarryr,) admet un relevé p, : Gal

(i) si v|p alors p, est potenticllement semi-stable de poids de Hodge-Tate (0,1)
pour tout F, — Q,
si v|p alors p, est potenticllement ordinaire si et seulement siv € T

W (wes)

(i
(iil) pv est de type de Weil-Deligne [ry, !

siv € TU{vtp,
sion 1 telle que o, reléve Lw et o,
(v) det polr, = ¥lr, (v € S).

Ny # 0} alors py a une sous-représentation a, de dimen-
Yy, est d’ordre fini

(iv

Alors, quitte & agrandir E, 7 posséde un relevé p - Gal(Q/F) — GLo(E) continu
non ramifié en dehors de S et tel que :

(i) si v|p alors plgag/r,) est potentiellement semi-stable de poids de Hodge-
Tate (0,1) pour tout F, < Q,
(i) si v|p alors plgagmr,) st iellement si et
(ii1) ploa@m) est de type de Weil-Deligne [ry, N, (v € S)
(iv) siv € TU{vtp,N, # 0} alors Plea/r,) @ une sous-rep
dimension 1 telle que o}, reléve fw et ole™ |y, est d'ordre fini
(v) detp=

fl l siveT

ation o), de

De plus, un tel relevé p de p provient d'une forme modulaire de Hilbert de poids

@2 ,2).
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Modularity Lifting

Theorem (Kisin, Barnet-Lamb—Gee—Geraghty, Breuil-Diamond)
Let p > 3. Write p = pg ,- Suppose
(i) p is modular,
(ii) p(Gk) NSLo(Fp) is absolutely irreducible.  ( “Big Image Condition”)
Then E is modular.

v

Theorem (Langlands—Tunnell)

Suppose pg 3 Is irreducible. Then pg 3 is modular.

Corollary
If E satisfies the Big Image Condition mod 3 then E is modular. J
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Corollary
Let j be the j-invariant of E. If, for all t € K,

(t +27)(t + 243)3
t3

(t —9)3(t +3)3
3

i# . JEE, j#

the E satisfies the Big Image Condition mod 3. In particular, E is modular.




Corollary
Let j be the j-invariant of E. If, for all t € K,

(t —9)%(t +3)°
t3

3
j#(t+27)£§+243)7 PP

the E satisfies the Big Image Condition mod 3. In particular, E is modular.

Conclusion
There are infinitely many j-invariants € K for which we cannot yet lift
modularity of pg 3.
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Fact
A non-cuspidal K-point on Xg(p) represents a pair (E', u) where
e E' is an elliptic curve /K,

e u: E'l[p] — E|[p] is a symplectic isomorphism of Gx-modules.

E’ is modular

P p is modular

PE,p Is modular

E is modular (if Big Image
Condition mod p is satisfied)

E’ satisfies Big Image mod 3

I



Modularity Switching (After Wiles)
Let p # 2,3. We TRY to show

E satisfies Big Image Condition mod p = E is modular

Fact

A non-cuspidal K-point on Xg(p) represents a pair (E', u) where
e E' is an elliptic curve /K,
e u: E'l[p] — E|[p] is a symplectic isomorphism of Gx-modules.

E’ satisfies Big Image mod 3 = E’ is modular
=  Pgp is modular
=>  Pgp is modular
=  E is modular (if Big Image
Condition mod p is satisfied)
To make this work, need ‘lots’ of K-points on Xg(p).
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Conclusion: Modularity switching as above works for p =5 but not 7.

Corollary
If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and mod 5, then E gives rise
to a K-point on one of the curves

Xa(3) X X(1) Xb(s)a a,be {O,HS,S}.




0 p=>5
>3 p>7

genus(Xg(p)) = {

Conclusion: Modularity switching as above works for p = 5 but not 7.

Corollary
If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and mod 5, then E gives rise
to a K-point on one of the curves

Xa(3) X X(1) Xb(5)7 a,be {07 ns, S}'

Problem: Xo(3) xx(1) Xo(5) = Xo(15) has genus 1, and Xp(15)(K) could
be infinite. So there might still be infinitely many non-modular j € K.
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Mod. Switching Il (Taylor, Ellenberg, Manoharmayum)

IDEA: Look for points on Xg(p) over solvable totally real extensions.

Theorem (Langlands Solvable Base Change)

Let E be an elliptic curve over a totally real field K. Suppose
e L/K is solvable and totally real.
e E/L is modular.

Then E/K is modular.

o Fixp=T.
e X = Xg(7) is a plane quartic curve defined over K.
@ X is a twist of the Klein quartic:

X() : By +y*z+22x =0,

o To generate solvable points, take a line ¢ € P?(K) and look at £ - X.

o Are there ¢ € P?(K) so that the extension defined by £ - X is totally
real?
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X = Xg(7)

Question: Are there ¢ € P?(K) so that the extension defined by £ - X is
totally real?

s

Lemma

The only real twist of X(7) is X(7)
itself.

Proof.

H'(Gal(C/R), Autc(X(7))) =0. | 4

Ol

v

2k

Answer: Yes! For each 0 : K < R, there is some non-empty open
U, C P?(K,) so that if £ € P2(K)NT], U, then £- X defines a totally real
extension.



Theorem (Manoharmayum, Freitas—Le Hung-S.)
If E/K satisfies the Big Image Condition mod 7 then E is modular.

Corollary

If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular. )




Theorem (Manoharmayum, Freitas—Le Hung-S.)

If E/K satisfies the Big Image Condition mod 7 then E is modular.

Corollary
If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

v

Fact

If E violates the Big Image Condition mod 3 and mod 5 and mod 7, then
E gives rise to a K-point on one of the curves

Xa(3) xx() Xb(5) xx(1) Xc(7), a,b,c € {0,ns,s}.




Theorem (Manoharmayum, Freitas—Le Hung-S.)
If E/K satisfies the Big Image Condition mod 7 then E is modular.

Corollary
If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

v

Fact

If E violates the Big Image Condition mod 3 and mod 5 and mod 7, then
E gives rise to a K-point on one of the curves

Xa(3) xx() Xb(5) xx(1) Xc(7), a,b,c € {0,ns,s}.

Theorem (Calegari, Freitas—Le Hung-S.)

There are at most finitely many j-invariants of elliptic curves over K that
are non-modular.
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Modularity Continued

To prove modularity for all real quadratic fields, it is enough to compute
all the non-cuspidal real quadratic points on

Xa(3) xx(1) Xb(5) xxa) Xc(7),  a,b,c €{0,ns,s}
and show that they're modular.

A much finer analysis shows that it enough to do this for the following
seven modular curves:

e X(b5,b7) (genus 3); b=borel.

o X(b3,s5) (genus 3); s=normalizer of split
o X(s3,s5) (genus 4); Cartan.

e X(b3,b5,d7) (genus 97); d7 has image = D3 in
e X(s3,bb,d7) (genus 153); PGL2(F7).

e X(b3,b5,e7) (genus 73); e7 has image = D, in
o X(s3,b5,e7)  (genus 113). PGL,(F7).
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X (b5, b7) = X,(35)

Xo(35) : y? = (x> +x—1)(x® —5x°> — 9x® — 5x — 1).
J(35)(Q) = Z/247 x 7.]27Z.

If P is a quadratic point on Xy(35), then
[P+ P° — ooy —oo_] € Jo(35)(Q).

Lemma
All quadratic points on Xo(35) have the form

P = (x, v/ f(x)), f(x) = (x* +x — 1)(x® = 5x% — 9x> — 5x — 1)

with x € Q (except for <%‘/§, O))
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Modular Interpretation of Real Quadratic P

p— (X7 \/@) =(E,0), x€Q  K=Q\f(x)

where E/K is an elliptic curve and C is a cyclic subgroup of order 35.

o : K — K conjugation
t = hyperelliptic involution

(E?,C9) = P? = (x,—/f(x)) = «(P), {

Ogg: 1+ = wss
(E?,C7) = wss(E, C) = (E/C, E[35]/C)

Conclusion: E? is isogenous to E. Therefore E is a Q-curve. Therefore,
E is modular (by Ribet and Khare-Wintenberger).

Moral: If you want to prove modularity of quadratic points on a modular
curve X, use Mordell-Weil information (over Q) to prove that Galois
conjugation is a geometric involution on X.
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Representing points on X: Roughly speaking, if F is a field, then
P e X(IF) is a pair (P1, P2) where P; € X(s3,b5)(F) and P, € X(d7)(IF)
with j(P1) = j(P2). (Can be made precise.)

X(d7)

Mordell-Weil Information

X(s3,b5) = 15A3, X(d7) = 49A3.

Moreover, X(s3,b5)(Q) = Z/AZ x Z/2Z, X(d7)(Q) = z/2Z.
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PeX(K) = Q:=m(P)e X(d7)(K)
=  Q+Q7eX(d7)(Q) ={0,T}.

Suppose Q@ + Q7 = O. Then Q7 = —Q. But X(d7)/(—1) = X(s7).
Q+Q7=0 = Q maps to a point in X(s7)(Q)
= the point Q € X(d7)(K) is modular
= the point P € X(K) is modular

Objective: Show that this is true for all P € X(K) for all quadratic K.
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X@(Q) ——————— X(s7,b5)(Q) x X(d7)(Q)
XC)(Fp) ———— X(s7,b5)(Fp) x X(d7)(F)
a({P, P7}) = (m1(P) + m1(P?), m2(P) + m2( P?))

Observe Im(a) € p~(Im(3,)). Using 11 < p < 100 we find

Im(a) - ﬂ Mil(Im(BP)) = {(?7 O)v (?, O)? (?7 O)}

11<p<100

Note mp(P) + m2(P)? = O. So P is modular!!
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Thank You!



