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Motivation

Conjecture

Let E be an elliptic curve over a totally real field K. Then E is modular in
the following sense: there is a Hilbert eigenform f of parallel weight 2 over
K such that L(E , s) = L(f, s).

Theorem (Wiles, Breuil, Conrad, Diamond, Taylor)

All elliptic curves over Q are modular.

Theorem (Jarvis and Manoharmayum 2004)

Semistable elliptic curves over Q(
√

2) and Q(
√

17) are modular.
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Prove Your Own Modularity Theorem

K totally real number field

GK := Gal(Q/K )

E/K elliptic curve defined over K

If p is a prime, denote by

ρE ,p : GK → Aut(E [p]) ∼= GL2(Fp)

the representation giving the action of GK on the p-torsion of E .

Definition

We say ρE ,p is modular if there exists a Hilbert cuspidal eigenform f over

K of parallel weight 2, and a place $ | p of Q such that

ρssE ,p ∼ ρssf,$.

Fact

E modular =⇒ ρE ,p modular. (Modularity lifting is reversing the arrow.)
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Breuil and Diamond (2013)—a modularity lifting theorem



Modularity Lifting

Theorem (Kisin, Barnet-Lamb–Gee–Geraghty, Breuil–Diamond)

Let p ≥ 3. Write ρ = ρE ,p. Suppose

(i) ρ is modular,

(ii) ρ(GK ) ∩ SL2(Fp) is absolutely irreducible. (“Big Image Condition”)

Then E is modular.

Theorem (Langlands–Tunnell)

Suppose ρE ,3 is irreducible. Then ρE ,3 is modular.

Corollary

If E satisfies the Big Image Condition mod 3 then E is modular.
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Subgroups of GL2(Fp)

Theorem (Dickson)

Let p ≥ 3 be a prime. Let H be a subgroup of GL2(Fp). Then

(i) either H ⊇ SL2(Fp),

BIG

(ii) or H/scalars ∼= A4, S4, A5,

BIG

(iii) or H is contained in the Borel subgroup

SMALL

B(p) =

{(
a b
0 c

)}
,

(iv) or H is contained in the normalizer of a split Cartan subgroup

?

C+
s (p) =

{(
a 0
0 b

)
,

(
0 a
b 0

)}
,

(v) or H is contained in the normalizer of a non-split Cartan subgroup
C+
ns(p).

?
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The Big Image Condition

Conclusion

If E violates the Big Image Condition mod p, then E gives rise to a
K -point on X0(p), Xns(p) or Xs(p).

Example

The maps X0(3)→ X (1), Xns(3)→ X (1) and Xs(3)→ X (1) are given by

t 7→ (t + 27)(t + 243)3

t3
, t 7→ t3, t 7→ (t − 9)3(t + 3)3

t3
.

Corollary

Let j be the j-invariant of E . If, for all t ∈ K ,

j 6= (t + 27)(t + 243)3

t3
, j 6= t3, j 6= (t − 9)3(t + 3)3

t3

the E satisfies the Big Image Condition mod 3. In particular, E is modular.
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There are infinitely many j-invariants ∈ K for which we cannot yet lift
modularity of ρE ,3.
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Modularity Switching (After Wiles)

Let p 6= 2, 3. We TRY to show

E satisfies Big Image Condition mod p =⇒ E is modular

Fact

A non-cuspidal K-point on XE (p) represents a pair (E ′, u) where

E ′ is an elliptic curve /K ,

u : E ′[p]→ E [p] is a symplectic isomorphism of GK -modules.

E ′ satisfies Big Image mod 3 =⇒ E ′ is modular
=⇒ ρE ′,p is modular
=⇒ ρE ,p is modular
=⇒ E is modular (if Big Image

Condition mod p is satisfied)
To make this work, need ‘lots’ of K -points on XE (p).
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genus(XE (p)) =

{
0 p = 5

≥ 3 p ≥ 7
.

Conclusion: Modularity switching as above works for p = 5 but not 7.

Corollary

If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and mod 5, then E gives rise
to a K -point on one of the curves

Xa(3)×X (1) Xb(5), a, b ∈ {0,ns, s}.

Problem: X0(3)×X (1) X0(5) ∼= X0(15) has genus 1, and X0(15)(K ) could
be infinite. So there might still be infinitely many non-modular j ∈ K .
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Mod. Switching II (Taylor, Ellenberg, Manoharmayum)
IDEA: Look for points on XE (p) over solvable totally real extensions.

Theorem (Langlands Solvable Base Change)

Let E be an elliptic curve over a totally real field K . Suppose

L/K is solvable and totally real.

E/L is modular.

Then E/K is modular.

Fix p = 7.

X = XE (7) is a plane quartic curve defined over K .

X is a twist of the Klein quartic:

X (7) : x3y + y3z + z3x = 0.

To generate solvable points, take a line ` ∈ P̌2(K ) and look at ` · X .

Are there ` ∈ P̌2(K ) so that the extension defined by ` · X is totally
real?
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X = XE (7)

Question: Are there ` ∈ P̌2(K ) so that the extension defined by ` · X is
totally real?

Lemma

The only real twist of X (7) is X (7)
itself.

Proof.

H1(Gal(C/R),AutC(X (7))) = 0.

Answer: Yes! For each σ : K ↪→ R, there is some non-empty open
Uσ ⊂ P̌2(Kσ) so that if ` ∈ P̌2(K )∩

∏
σ Uσ then ` ·X defines a totally real

extension.



X = XE (7)

Question: Are there ` ∈ P̌2(K ) so that the extension defined by ` · X is
totally real?

Lemma

The only real twist of X (7) is X (7)
itself.

Proof.

H1(Gal(C/R),AutC(X (7))) = 0.

Answer: Yes! For each σ : K ↪→ R, there is some non-empty open
Uσ ⊂ P̌2(Kσ) so that if ` ∈ P̌2(K )∩

∏
σ Uσ then ` ·X defines a totally real

extension.



X = XE (7)

Question: Are there ` ∈ P̌2(K ) so that the extension defined by ` · X is
totally real?

Lemma

The only real twist of X (7) is X (7)
itself.

Proof.

H1(Gal(C/R),AutC(X (7))) = 0.

Answer: Yes! For each σ : K ↪→ R, there is some non-empty open
Uσ ⊂ P̌2(Kσ) so that if ` ∈ P̌2(K )∩

∏
σ Uσ then ` ·X defines a totally real

extension.



X = XE (7)

Question: Are there ` ∈ P̌2(K ) so that the extension defined by ` · X is
totally real?

Lemma

The only real twist of X (7) is X (7)
itself.

Proof.

H1(Gal(C/R),AutC(X (7))) = 0.

Answer: Yes! For each σ : K ↪→ R, there is some non-empty open
Uσ ⊂ P̌2(Kσ) so that if ` ∈ P̌2(K )∩

∏
σ Uσ then ` ·X defines a totally real

extension.



X = XE (7)

Question: Are there ` ∈ P̌2(K ) so that the extension defined by ` · X is
totally real?

Lemma

The only real twist of X (7) is X (7)
itself.

Proof.

H1(Gal(C/R),AutC(X (7))) = 0.

Answer: Yes! For each σ : K ↪→ R, there is some non-empty open
Uσ ⊂ P̌2(Kσ) so that if ` ∈ P̌2(K )∩

∏
σ Uσ then ` ·X defines a totally real

extension.



Theorem (Manoharmayum, Freitas–Le Hung–S.)

If E/K satisfies the Big Image Condition mod 7 then E is modular.

Corollary

If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and mod 5 and mod 7, then
E gives rise to a K-point on one of the curves

Xa(3)×X (1) Xb(5)×X (1) Xc(7), a, b, c ∈ {0,ns, s}.

Theorem (Calegari, Freitas–Le Hung–S.)

There are at most finitely many j-invariants of elliptic curves over K that
are non-modular.



Theorem (Manoharmayum, Freitas–Le Hung–S.)

If E/K satisfies the Big Image Condition mod 7 then E is modular.

Corollary

If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and mod 5 and mod 7, then
E gives rise to a K-point on one of the curves

Xa(3)×X (1) Xb(5)×X (1) Xc(7), a, b, c ∈ {0,ns, s}.

Theorem (Calegari, Freitas–Le Hung–S.)

There are at most finitely many j-invariants of elliptic curves over K that
are non-modular.



Theorem (Manoharmayum, Freitas–Le Hung–S.)

If E/K satisfies the Big Image Condition mod 7 then E is modular.

Corollary

If E satisfies the Big Image Condition mod 3 or mod 5 then E is modular.

Fact

If E violates the Big Image Condition mod 3 and mod 5 and mod 7, then
E gives rise to a K-point on one of the curves

Xa(3)×X (1) Xb(5)×X (1) Xc(7), a, b, c ∈ {0,ns, s}.

Theorem (Calegari, Freitas–Le Hung–S.)

There are at most finitely many j-invariants of elliptic curves over K that
are non-modular.



Modularity Continued

To prove modularity for all real quadratic fields, it is enough to compute
all the non-cuspidal real quadratic points on

Xa(3)×X (1) Xb(5)×X (1) Xc(7), a, b, c ∈ {0,ns, s}

and show that they’re modular.

A much finer analysis shows that it enough to do this for the following
seven modular curves:

X (b5,b7) (genus 3);

X (b3, s5) (genus 3);

X (s3, s5) (genus 4);

X (b3,b5,d7) (genus 97);

X (s3,b5,d7) (genus 153);

X (b3,b5, e7) (genus 73);

X (s3,b5, e7) (genus 113).

b=borel.

s=normalizer of split
Cartan.

d7 has image ∼= D3 in
PGL2(F7).

e7 has image ∼= D4 in
PGL2(F7).
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X (b5, b7) = X0(35)

X0(35) : y2 = (x2 + x − 1)(x6 − 5x5 − 9x3 − 5x − 1).

J0(35)(Q) ∼= Z/24Z× Z/2Z.

If P is a quadratic point on X0(35), then

[P + Pσ −∞+ −∞−] ∈ J0(35)(Q).

Lemma

All quadratic points on X0(35) have the form

P = (x ,±
√

f (x)), f (x) = (x2 + x − 1)(x6 − 5x5 − 9x3 − 5x − 1)

with x ∈ Q (except for
(
−1±

√
5

2 , 0
)

).
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Modular Interpretation of Real Quadratic P

P =
(

x ,
√

f (x)
)

= (E ,C ), x ∈ Q, K = Q(
√

f (x))

where E/K is an elliptic curve and C is a cyclic subgroup of order 35.

(Eσ,Cσ) = Pσ = (x ,−
√

f (x)) = ι(P),

{
σ : K → K conjugation

ι = hyperelliptic involution

Ogg: ι = w35

(Eσ,Cσ) = w35(E ,C ) = (E/C ,E [35]/C )

Conclusion: Eσ is isogenous to E . Therefore E is a Q-curve. Therefore,
E is modular (by Ribet and Khare–Wintenberger).
Moral: If you want to prove modularity of quadratic points on a modular
curve X , use Mordell–Weil information (over Q) to prove that Galois
conjugation is a geometric involution on X .
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A Big Example
Let X = X (s3,b5, d7) (genus 153).

Then X = X (s3,b5)×X (1) X (d7).

X
π1

uu

π2

((

X (s3,b5)

j
((

X (d7)

j
vv

X (1)

Representing points on X : Roughly speaking, if F is a field, then
P ∈ X (F) is a pair (P1,P2) where P1 ∈ X (s3,b5)(F) and P2 ∈ X (d7)(F)
with j(P1) = j(P2). (Can be made precise.)

Mordell–Weil Information

X (s3,b5) = 15A3, X (d7) = 49A3.

Moreover, X (s3,b5)(Q) ∼= Z/4Z× Z/2Z, X (d7)(Q) ∼= Z/2Z.
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P ∈ X (K )

=⇒ Q := π2(P) ∈ X (d7)(K )
=⇒ Q + Qσ ∈ X (d7)(Q) = {O,T}.

Suppose Q + Qσ = O. Then Qσ = −Q. But X (d7)/〈−1〉 = X (s7).

Q + Qσ = O =⇒ Q maps to a point in X (s7)(Q)
=⇒ the point Q ∈ X (d7)(K ) is modular
=⇒ the point P ∈ X (K ) is modular

Objective: Show that this is true for all P ∈ X (K ) for all quadratic K .
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X (2)(Q)
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α
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