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More Motivation

Theorem (Jarvis and Manoharmayum 2004 )
Semistable elliptic curves over Q(v/2) and Q(+/17) are modular.

Theorem (Jarvis and Meekin, 2004)

The only solutions to the equation
aP + bP + cP =0, p > 5 prime

with a, b, ¢ € Q(v/2) satisfy abc = 0.

“...the numerology required to generalise the work of Ribet and
Wiles directly continues to hold for Q(\/2). .. there are no other
real quadratic fields for which this is true ... " (Jarvis and Meekin)
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Modularity over Totally Real Fields

K totally real number field.
After enormous progress with modularity lifting by Kisin, Gee,
Barnet-Lamb, Geraghty, Breuil, Diamond, ...

Theorem (Calegari, Freitas—Le Hung-S.)

There are at most finitely many j-invariants of elliptic curves over K that
are non-modular.

Theorem (Freitas—Le Hung-S.)

If K is real quadratic, then all elliptic curves over K are modular.
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Corollary

E[p] = (¢,) x (g*P  (mod ¢%)) as Gg-modules.

If o € Gy then
o((p)=¢2  o(q"/P)=c¢bqtP,  abeT,.

Think of ¢, and q'/? as an F,-basis for E[p]. The action of o is given by

pp(0) = (8 f) :

Obtain a representation

Pp - Gy — GLQ(FP).
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Image of Inertia

@ Iy C Gy inertia subgroup

As p # £, the extension Q;((p)/Qp is unramified, so

a(Cp) = Cp, for all o € I.

pplle) < {<(1) [1)> tbe Fp} (cyclic of order p).

The extension Q(q'/P)/Qy is unramified if and only if p | v,(q).
Lemma

o If p|ui(q) then #p,(le) = 1.

o If ptu(q) then #p,(le) = p.
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The discriminant A of E is given by

A=q]J(1—g"*  (observe vi(q) = ve(A)).

n>1

Lemma
o Ifp|vi(A) then #pp(le)
o If pfug(A) then #p,(le)

1
p.
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Global Calculations

e Gp = Gal(Q/Q)

E/Q an elliptic curve

A minimal discriminant

N conductor

p # 2 prime

Pp : Gg — Aut(E[p]) = GLo(Fp).

Question: How do you define the conductor N(p,) of 5,7

Hint: The conductor measures the action of /; (and higher ramification
subgroups) on E[p] for all primes /.

First Guess: Let N(p,) = N. WRONG

Better Guess:

N
N@Bo) =2 Mp= II ¢
P o|IN
plue(A)
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plue(A)

Suppose a, b, ¢ € Z satisfy
aP+bP+cP =0, abc #0, ged(a, b, c) = 1.

Let
E:y?=x(x— aP)(x + bP).

Then

A =16a"PbP(aP + bP)* = 16a°Pb*Pc®P,  N=2"- ] ¢

Thus N(p,) = 2".
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Suppose a, b, ¢ € Z satisfy
aP+bP+cP =0, abc #0, ged(a, b, c) = 1.

Let
E:y?=x(x— aP)(x + bP).

Then

A =16a"PbP(aP + bP)* = 16a°Pb*Pc®P,  N=2"- ] ¢

Thus N(p,) = 27. With care, N(p,) = 2.
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Fermat equation aP + bP 4 c? = 0 over QQ

Non-trivial solution (a, b, ¢) to the Fermat equation

Frey curve E, pc : y? = x(x — aP)(x + bP)

Wiles, Ribet, Mazur

Cuspidal eigenform of weight 2 and level 2

Contradiction

Accident # 1 : there are no newforms of weight 2 and level 2.
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A Variant

N
N(pp)zﬁ¢ MP: H L.
P 2N
plue(A)

Let g # 2 be a prime. Suppose a, b, ¢ € Z satisfy
a? +bP +c? =0, abc # 0, ged(a, b, c) = q.

Let
E:y? = x(x — aP)(x + bP).

Then E has additive reduction at g. So ¢° || N. Thus N(p,) = 24°.
Dimension of newspace of weight 2 and level 2¢° is roughly q2/6.

Accident # 2: h(Z) = 1.
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parallel weight 2 and at one of these levels.
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Asymptotic Fermat: p > Ck

Conclusion: pg , ~ p; ., (where @ | p) for some Hilbert eigenform of
parallel weight 2 and at one of these levels.

Let q be a prime of K. Then

So w divides

B(f,q) := (aq(f) — N(q) — 1)(aq(f) + N(q) + 1) H (aq(f) — t)
|t]<2+/N(q)

Suppose aq(f) ¢ Q. Then B(f,q) # 0, so p is bounded.
CONTRADICTION!

Conclusion: f has rational eigenvalues.



Asymptotic Fermat a? + b” 4+ ¢ = 0 over a totally real
field K

Non-trivial solution (a, b, ¢) to the Fermat equation with p large

Frey curve E, pc : y? = x(x — aP)(x + bP)

Jarvis, Fujiwarwa, Rajaei, Merel, Momose,.

Hilbert eigenform of weight 2 and level ?7, rational eigenvalues

modulo an ‘Eichler—Shimura’ conjecture

E/K with full 2-torsion, j(E) € Ok[1/2], additional properties
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What is the ‘proportion’ of real quadratic fields K = (@(\/3) for which
there are such elliptic curves?

Such elliptic curves fall in 5 parametric families, and some sporadic ones.
Here is one of them: y? = x(x — 1)(x — \) where

225 — 228 4 1+ vgrr/dst
2 )

A\ =
where s >t > 0 and

(25 +2° 4+ 1) (2742 —1)(2° =2 +1)(2° = 2" — 1) = ds ¢ - V2

st

Qs t

Question
What is the density of such ds: among the square-free positive integers?
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(2° 4284+ 1)(2°+2" = 1)(2° = 2"+ 1)(2° — 2" — 1) = ds - V2.

Qs t

Let n > 0 and M, = 2" — 1 (the n-th Mersenne number). It is easy to see
that

#{as; mod M, : s>t>0}<n

Incorrect assumption: gcd(M,, vs:) =1 for all s > t > 0.

M
_2 . n
#{vef mod M, : s>t>0}< Sy

But ds s = s - v;f o)

n? - M,
#{ds,t mod Mn . S>t>0}§W

Therefore, the density of ds ¢
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n?

5(ds7t) S W
Question

Can [ choose n so that — ) is arbitrarily small?

Theorem (Bang, 1886)

wMp)>2¢M —2. (d|n = My|M,)

4n?
5(dsyt) S 22w(n) :
Letn=[]p v w(n)~ 2~  log(n)~y.
oty log(y)

Answer: §(ds ) = 0.
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Theorem (Freitas-S.)

If we assume a suitable “Eichler—Shimura” conjecture, then the asymptotic
FLT holds for almost all real quadratic fields.

Unconditionally, the asymptotic FLT holds for 5/6 of real quadratic fields.

Thank You!



