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Recap: The Modularity Theorem

We call a newform rational if all its coefficients are in Q, otherwise it is
irrational.

Theorem (Modularity Theorem)

There is a bijection

rational newforms f of level N ←→ isogeny classes of elliptic

curves of conductor N.

If f = q +
∑

n≥2 cnq
n corresponds to E/Q then for all ` - N

c` = a`(E ), a`(E ) = ` + 1−#E (F`).
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Recap: ‘arises from’

Definition

Let

E be an elliptic curve of conductor N,

f = q +
∑

n≥2 cnq
n be a newform of level N ′,

K = Q(c2, c3, . . .),

OK the ring of integers of K ,

p a prime.

We say that E arises from f mod p and write E ∼p f if there is some
prime ideal P | p of OK such that for all primes `

(i) if ` - pNN ′ then a`(E ) ≡ c` (mod P), and

(ii) if ` - pN ′ and ` || N then ` + 1 ≡ ±c` (mod P).
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Recap: Ribet’s Level Lowering Theorem

Let

1 E/Q be an elliptic curve,

2 ∆ = ∆min be the discriminant of a minimal model of E ,

3 N be the conductor of E ,

4 for a prime p let

Np = N
/ ∏

q||N,
p | ordq(∆)

q.

Theorem (Ribet’s Theorem)

Let p ≥ 3 be a prime.

Suppose E does not have any p-isogenies.

Suppose E is modular.

Then there exists a newform f of level Np such that E ∼p f .
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Frey Curves
Given a Diophantine equation, suppose it has a solution, and associate
with it an elliptic curve E called a Frey curve, if possible. The key
properties of the Frey curve are

The coefficients of the elliptic curve somehow depend on the solution
to the Diophantine equation.
The minimal discriminant can be written in the form ∆ = C · Dp

where D depends on the solution. The factor C does not depend
on the solutions but only on the Diophantine equation.
E has multiplicative reduction at the primes dividing D. (i.e. if p | D
then p || N).

We conclude
1 The conductor N of E is divisible by primes dividing C and D

(depends on the equation and the solution).
2 The primes dividing D can be removed when we write down Np

(depends only on the equation).
3 There are only finitely many possibilities for Np.
4 For each Np, there are only finitely many newforms f of level Np.
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Frey Curve

1 The conductor N of E is divisible by primes dividing C and D
(depends on the equation and the solution).

2 The primes dividing D can be removed when we write down Np

(depends only on the equation).

3 There are only finitely many possibilities for Np.

4 For each Np, there are only finitely many newforms f of level Np.

Applying Wiles, Ribet and Mazur, we have E ∼p f for one of finitely many
f .

What can we learn about the solution to the Diophantine equation
from knowing the finitely many f ?
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Some Frey Curves

The Frey curves for equations like Aap + Bbp + Ccp = 0 arise from the
fact that an elliptic curve with rational torsion containing Z2 × Z2 may be
parametrized in the shape

Er ,s : y2 = x(x + r)(x + s)

with discriminant
∆r ,s = 16r2s2(r − s)2.

Similarly, elliptic curves with at least one rational 2-torsion point may be
parametrized as

Er ,s : y2 = x3 + rx2 + sx

with discriminant
∆r ,s = 16s2(r2 − 4s).
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Some Frey Curves

Similarly, elliptic curves with at least one rational 2-torsion point may be
parametrized as

Er ,s : y2 = x3 + rx2 + sx

with discriminant
∆r ,s = 16s2(r2 − 4s).

If we want to try to prove something about, for example, the equation

ap + bp = c2,

we can consider E2c,bp which has discriminant

16b2p(4c2 − 4bp) = 64b2pap.
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Some Frey Curves

We can use such an approach to “write down” Frey curves corresponding
to equations like

1 Aap + Bbp = Ccp

2 Aap + Bbp = Cc2

3 Aap + Bbp = Cc3

4 aq + bq = Ccp, q = 3, 5, etc

These lead to further equations like

a2 + b4 = cp

considered by Ellenberg and others.
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The Diophantine Equation ap + Lrbp + cp = 0
Let L be an odd prime number. Consider

ap + Lrbp + cp = 0, abc 6= 0, p ≥ 5 is prime.

We assume that

a, b, c are coprime, 0 < r < p.

Let A, B, C be a permutation of ap, Lrbp, cp such that

2 | B, A ≡ −1 (mod 4).

Let E be the elliptic curve

E : y2 = x(x − A)(x + B).

Then

∆min =
L2r (abc)2p

28
, N =

∏
`|Labc

`.
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∆min =
L2r (abc)2p

28
, N =

∏
q|Labc

q.

Np = N
/ ∏

q||N,
p | ordq(∆)

q = 2L.
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Ribet’s Theorem =⇒ there is a newform f of level Np = 2L such that
E ∼p f .

Theorem

There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60 .

Therefore the equation

ap + Lrbp + cp = 0, abc 6= 0, p ≥ 5 is prime.

has no solutions for L = 3, 5, 11.
What can we do for other values of L? Say L = 19, so Np = 38.
There are two newforms of level 38:

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

No contradiction yet.
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Bounding the Exponent

E : y2 = x(x − A)(x + B).

N =
∏

`|19abc

`, Np = 38.

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

E ∼p f = q +
∑

n≥2 cnq
n, where f is one of f1, f2. Suppose ` - 38.

(i) If ` - abc then a`(E ) ≡ c` (mod p).

(ii) If ` | abc then ` + 1 ≡ ±c` (mod p).
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What do we know about a`(E )?

E : y2 = x(x − A)(x + B)

has conductor N. Suppose ` - N. Then

−2
√
` ≤ a`(E ) ≤ 2

√
` Hasse–Weil Bound.

Also, 4 | #E (F`). But

` + 1− a`(E ) = #E (F`) ≡ 0 (mod 4).

So
` + 1 ≡ a`(E ) (mod 4).

Conclusion: If ` - N then

a`(E ) ∈ S` := {a ∈ Z : −2
√
` ≤ a ≤ 2

√
`, ` + 1 ≡ a (mod 4)}.
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N =
∏

`|19abc

`, Np = 38.

E ∼p f = q +
∑

n≥2 cnq
n, where f is one of f1, f2. Suppose ` - 38.

(i) If ` - abc then a`(E ) ≡ c` (mod p).

(ii) If ` | abc then ` + 1 ≡ ±c` (mod p).

If ` - abc then

a`(E ) ∈ S` := {a ∈ Z : −2
√
` ≤ a ≤ 2

√
`, ` + 1 ≡ a (mod 4)}.

So p | B`(f ) where

B`(f ) = (` + 1− c`)(` + 1 + c`) ·
∏
a∈S`

(a− c`).
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S` := {a ∈ Z : −2
√
` ≤ a ≤ 2

√
`, ` + 1 ≡ a (mod 4)}.

So p | B`(f ) where

B`(f ) = (` + 1− c`)(` + 1 + c`) ·
∏
a∈S`

(a− c`),

and f = f1 or f2.

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

Letting ` = 3, we have

B3(f1) = −15, B3(f2) = 15.

So p = 5.
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So p ≤ 5. Is that all?

Well, if we go ahead and compute B5(f1), we find that B5(f1) = −144 and

gcd(B3(f1),B5(f1)) = gcd(−15,−144) = 3,

so E 6∼p f1 (p ≥ 5).

Eliminated f1.
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A Variant of the Fermat Equation
Suppose

xp + 19ryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

has a non-trivial solution. Then E ∼p f2. But

B3(f2) = 15, B5(f2) = 240, B7(f2) = 1155, B11(f2) = 3360

=⇒ p = 5.

Is B`(f2) always divisible by 5?

newform f2 ←→ elliptic curve F = 38B1.

#F (Q)tors = 5 =⇒ 5 | (` + 1− c`)

=⇒ 5 | B`(f2) := (` + 1− c`)(` + 1 + c`)
∏
a∈S`

(a− c`).
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Eliminating p = 5

Suppose p = 5. Want a contradiction.

` - NN ′ =⇒ a`(E ) ≡ c` (mod 5).

#E (F`) = ` + 1− a`(E ) ≡ ` + 1− c` ≡ 0 (mod 5).

Čebotarev Density Theorem =⇒ E has a 5-isogeny.

But E is semi-stable and has full 2-torsion. Mazur’s Theorem gives
contradiction.
The equation

xp + 19ryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

has no solutions.
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Čebotarev Density Theorem =⇒ E has a 5-isogeny.

But E is semi-stable and has full 2-torsion. Mazur’s Theorem gives
contradiction.

The equation

xp + 19ryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

has no solutions.

30 / 39



Eliminating p = 5

Suppose p = 5. Want a contradiction.

` - NN ′ =⇒ a`(E ) ≡ c` (mod 5).

#E (F`) = ` + 1− a`(E ) ≡ ` + 1− c` ≡ 0 (mod 5).
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p = 3?

Note that we cannot extend this to the case p = 3.

We have
83 + 19 · (−3)3 + 13 = 0.

In fact, the elliptic curve corresponding to

xp + 19ryp + zp = 0

has rank 2 if r = 1 (and rank 0 for r = 2).
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Mazur

Using similar ideas, Mazur proved the following.

Theorem (Mazur)

Let L be an odd prime that is neither a Fermat prime nor a Mersenne
prime. Then there is a positive CL such that the following holds: the only
solutions to the equation

ap + Lrbp + cp = 0

with p > CL satisfy abc = 0.

For details of the proof, see the notes.
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How did we “know” this would work?

We had that

p | B`(f ) := (` + 1− c`)(` + 1 + c`)
∏
a∈S`

(a− c`),

for some f from a finite set and ` “nice”. The S` is the set of “possible”
Fourier coefficients of our Frey curve.

The only way this can fail to bound p is if we have B`(f ) = 0 for every
suitable `.

We claim that this can never happen if f is an irrational form, if our Frey
curve is defined over Q (Sturm bounds!).

It can also never happen if, say, our Frey curve (defined over Q) has a
rational 2-torsion point and f is a rational form, corresponding to and
elliptic curve without rational 2-torsion.
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