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Recap: The Modularity Theorem

We call a newform rational if all its coefficients are in Q, otherwise it is
irrational.

Theorem (Modularity Theorem)

There is a bijection

rational newforms f of level N <— isogeny classes of elliptic

curves of conductor N.

Iff=q+> ,52¢nq" corresponds to E/Q then for all £ N

ce=alE),  alE)=10+1—#E(F).
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Recap: ‘arises from’

Definition
Let
@ E be an elliptic curve of conductor N,
o f=q+3 ,5,¢nq" be a newform of level N,
o K=Q(c,0c3,...),
@ Ok the ring of integers of K,
@ p a prime.
We say that E arises from f mod p and write E ~, f if there is some
prime ideal B | p of Ok such that for all primes ¢
(i) if £4 pNN’ then a;(E) = ¢; (mod B), and
(ii) if £4 pN" and £ || N then £+ 1 = ¢, (mod ‘B).
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Recap: Ribet's Level Lowering Theorem

Let
© E/Q be an elliptic curve,
Q@ A = Apn be the discriminant of a minimal model of E,
@ N be the conductor of E,

Q for a prime p let
/v,,:/v/ II «

q|N,
p|ordg(A)

Theorem (Ribet's Theorem)
@ Let p > 3 be a prime.
@ Suppose E does not have any p-isogenies.

@ Suppose E is modular.

Then there exists a newform f of level N, such that E ~ f.
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Frey Curves

Given a Diophantine equation, suppose it has a solution, and associate
with it an elliptic curve E called a Frey curve, if possible. The key
properties of the Frey curve are

@ The coefficients of the elliptic curve somehow depend on the solution
to the Diophantine equation.

@ The minimal discriminant can be written in the form A = C - DP
where D depends on the solution. The factor C does not depend
on the solutions but only on the Diophantine equation.

e E has multiplicative reduction at the primes dividing D. (i.e. if p| D
then p || N).

We conclude
© The conductor N of E is divisible by primes dividing C and D
(depends on the equation and the solution).
@ The primes dividing D can be removed when we write down N,
(depends only on the equation).
© There are only finitely many possibilities for N,.
© For each N, there are only finitely many newforms f of level N,,.
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Frey Curve

@ The conductor N of E is divisible by primes dividing C and D
(depends on the equation and the solution).

@ The primes dividing D can be removed when we write down N,
(depends only on the equation).

© There are only finitely many possibilities for N,.

© For each N, there are only finitely many newforms f of level N,.

Applying Wiles, Ribet and Mazur, we have E ~,, f for one of finitely many
f.

What can we learn about the solution to the Diophantine equation
from knowing the finitely many f?
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Some Frey Curves

The Frey curves for equations like AaP + BbP + CcP = 0 arise from the

fact that an elliptic curve with rational torsion containing Zy X Zy may be
parametrized in the shape

Ers ¥y =x(x+r)(x+5)
with discriminant

A, =16r%s%(r — s)2.
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Some Frey Curves

The Frey curves for equations like AaP + BbP + CcP = 0 arise from the

fact that an elliptic curve with rational torsion containing Zy X Zy may be
parametrized in the shape

Ers : y>=x(x+r)(x+5s)

with discriminant
A, =16r%s%(r — s)2.

Similarly, elliptic curves with at least one rational 2-torsion point may be
parametrized as

E s : y2 =x3 4+ rx® + sx
with discriminant
A, s = 165%(r? — 4s).
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Some Frey Curves

Similarly, elliptic curves with at least one rational 2-torsion point may be
parametrized as

E s : y2 =3+ 2 + sx
with discriminant

A, s = 165%(r? — 4s).
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Some Frey Curves

Similarly, elliptic curves with at least one rational 2-torsion point may be
parametrized as

E s : y2 =3+ 2 + sx
with discriminant
A, s = 165%(r? — 4s).
If we want to try to prove something about, for example, the equation
aP + bP = 2,
we can consider Epc pp which has discriminant

16b%P(4c® — 4bP) = 64b%P P,
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Some Frey Curves

We can use such an approach to “write down
to equations like

Q@ AaP + BbP = CcP
Q AaP + BbP = Cc?
Q AaP + BbP = Cc3
Q a9+ b9 = CcP, q=3,5, etc

" Frey curves corresponding
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Some Frey Curves

We can use such an approach to “write down
to equations like

Q@ AaP + BbP = CcP
Q AaP + BbP = Cc?
Q AaP + BbP = Cc3
Q a9+ b9 = CcP, q=3,5, etc

These lead to further equations like
2+ b =cP

considered by Ellenberg and others.

" Frey curves corresponding
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The Diophantine Equation aP + L"bP 4+ cP = 0

Let L be an odd prime number. Consider
aP +L"bP +cP =0, abc # 0, p > 5 is prime.
We assume that
a, b, c are coprime, 0<r<np.

Let A, B, C be a permutation of aP, L"bP, cP such that

2| B, =-1 (mod 4).
Let E be the elliptic curve

E : y?> =x(x— A)(x+ B).
Then

L|Labc
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78
q|Labc
Np=N/ [ a=2L
qllN,
p|lordg(A)
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Ribet's Theorem = there is a newform f of level N, = 2L such that
E~pf.

Theorem
There are no newforms at levels

1,2,3,4,5,6,7,8,9,10, 12,13, 16, 18, 22, 25, 28, 60 .

Therefore the equation
a?+L"'bP+cP =0, abc # 0, p > 5 is prime.

has no solutions for L = 3, 5, 11.
What can we do for other values of L? Say L =19, so N, = 38.
There are two newforms of level 38:

Ai=q-a+¢+q" —¢°—q" +--
h=q+¢ —d+q"—4¢° —q°+3q¢" +--

No contradiction yet.
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Bounding the Exponent

E : y?>=x(x— A)(x + B).
N= ] ¢ N,=38

£|19abc

Ai=qa-¢+d+q" - —q' +--

h=q+q¢ —a’+q"—4¢° - " +3q¢" +---

E~yf=q+ anz cnq", where f is one of f1, f,. Suppose ¢ t 38.

(i) If £+ abc then ay(E) = ¢; (mod p).
(ii) If £] abc then £+ 1= +¢; (mod p).
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What do we know about a;(E)?

E : y?>=x(x— A)(x+ B)
has conductor N. Suppose £ N. Then

—2V0 < ay(E) <2V¢  Hasse-Weil Bound.

Also, 4 | #E(F,). But
0+ 1—a(E)=#E(F;) =0 (mod 4).

So
(+1=ay(E) (mod 4).

Conclusion: If £+ N then

ag(E)GSg::{an:—2\/E§a§2\/z, {+1=a

(mod 4)}.
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N= ][ ¢ N,=38
£|19abc

E~,f=q+ anz cnq", where f is one of f1, f,. Suppose /1 38.
(i) If £+ abc then ay(E) = ¢; (mod p).
(ii) If £] abc then £+ 1= +¢; (mod p).
If £+ abc then
a(E)e Sy ={acZ : -2V <a<2VL, (+1=a (mod4)}.

So p | By(f) where

Bi(f)=(+1-c)(t+1+c) [[(a—a)
EISLY)
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Sp={acZ : -2V <a<2Vl, /+1=a (mod4)}.

So p | By(f) where

B(f)=(l+1—-c))(l+1+c)- H(a— ),
acS,

and f = f; or f.
i=g—g¢+q¢+qg*—g®—qg" +---
h=q+¢ - +q"—4¢° —q°+3¢" +-

Letting £ = 3, we have

Bs(f1) = —15, Bs(f) = 15.

So p =5.

19/39



So p < 5. Is that all?

Well, if we go ahead and compute Bs(f;), we find that Bs(f;) = —144 and
gcd(Bs(f), Bs(f1)) = ged(—15, —144) = 3,

so E op fi (p >5).
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So p < 5. Is that all?

Well, if we go ahead and compute Bs(f;), we find that Bs(f;) = —144 and
gcd(Bs(f), Bs(f1)) = ged(—15, —144) = 3,

so E op fi (p >5).

Eliminated f;.
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A Variant of the Fermat Equation
Suppose

xP +19"yP + zP =0, xyz #0, p > 5is prime,
has a non-trivial solution. Then E ~, f,. But

Bs(f,) =15, Bs(f) =240, By(f2) =1155, Bii(f) = 3360
— p=>.
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A Variant of the Fermat Equation
Suppose

xP +19"yP + zP =0, xyz #0, p > 5is prime,
has a non-trivial solution. Then E ~, f,. But

Bs(f,) =15, Bs(f) =240, By(f2) =1155, Bii(f) = 3360
— p=>.

Is By(f2) always divisible by 57
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A Variant of the Fermat Equation
Suppose

xP +19"yP + zP =0, xyz #0, p > 5is prime,
has a non-trivial solution. Then E ~, f,. But

Bs(f,) =15, Bs(f) =240, By(f2) =1155, Bii(f) = 3360
— p=>.

Is By(f2) always divisible by 57

newform f, <— elliptic curve F = 38B1.
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A Variant of the Fermat Equation
Suppose

xP +19"yP + zP =0, xyz #0, p > 5is prime,
has a non-trivial solution. Then E ~, f,. But

Bs(f,) =15, Bs(f) =240, By(f2) =1155, Bii(f) = 3360
— p=>.

Is By(f2) always divisible by 57

newform f, <— elliptic curve F = 38B1.

#F(Q)ors =5=5|(l+1—-¢)

= 5| Bi(h)=(+1-c)(l+1+c) [[(a— )
aesy
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Eliminating p =5

Suppose p = 5. Want a contradiction.
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Eliminating p =5
Suppose p = 5. Want a contradiction.

04NN = ay(E) = ¢, (mod 5).
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Eliminating p =5
Suppose p = 5. Want a contradiction.

04NN = ay(E) = ¢, (mod 5).

#HE(F)=(+1—a(E)=l+1—-¢ =0 (mod?5).
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Eliminating p =5
Suppose p = 5. Want a contradiction.

04NN = ay(E) = ¢, (mod 5).
#HE(F)=(+1—a(E)=l+1—-¢ =0 (mod?5).

Cebotarev Density Theorem = E has a 5-isogeny.
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Eliminating p =5
Suppose p = 5. Want a contradiction.
04 NN = ay(E) = ¢; (mod 5).
#HE(F)=0+1—aWE)=L+1—¢ =0 (mod5).
Cebotarev Density Theorem = E has a 5-isogeny.

But E is semi-stable and has full 2-torsion. Mazur’'s Theorem gives
contradiction.
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Eliminating p =5
Suppose p = 5. Want a contradiction.

04NN = ay(E) = ¢, (mod 5).
#HE(F)=(+1—a(E)=l+1—-¢ =0 (mod?5).

Cebotarev Density Theorem = E has a 5-isogeny.

But E is semi-stable and has full 2-torsion. Mazur’'s Theorem gives

contradiction.
The equation

xP +19"yP + zP =0, xyz #0, p>5is prime,
has no solutions.

31/39



p =37

Note that we cannot extend this to the case p = 3.
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p =37

Note that we cannot extend this to the case p = 3.

We have
8 +19- (=33 +13=0.

33/39



p =37

Note that we cannot extend this to the case p = 3.

We have
8 +19- (=33 +13=0.
In fact, the elliptic curve corresponding to
xP4+19"yP + 2P =0

has rank 2 if r =1 (and rank 0 for r = 2).
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Mazur

Using similar ideas, Mazur proved the following.

Theorem (Mazur)

Let L be an odd prime that is neither a Fermat prime nor a Mersenne
prime. Then there is a positive C; such that the following holds: the only
solutions to the equation

aP+L'bP+cP=0

with p > C; satisfy abc = 0.

For details of the proof, see the notes.
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How did we “know” this would work?
We had that

plBf):=(+1-c)(l+1+c)[](a— )
aEesSy

for some f from a finite set and ¢ “nice”. The Sy is the set of “possible”
Fourier coefficients of our Frey curve.
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How did we “know” this would work?
We had that

plBi(f):={+1-c)(l+1+c) H (a— c),
aEesSy
for some f from a finite set and ¢ “nice”. The Sy is the set of “possible”

Fourier coefficients of our Frey curve.

The only way this can fail to bound p is if we have By(f) = 0 for every
suitable /.
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How did we “know” this would work?
We had that

plBi(f):={+1-c)(l+1+c) H (a— c),
aEesSy
for some f from a finite set and ¢ “nice”. The Sy is the set of “possible”

Fourier coefficients of our Frey curve.

The only way this can fail to bound p is if we have By(f) = 0 for every
suitable /.

We claim that this can never happen if f is an irrational form, if our Frey
curve is defined over Q (Sturm bounds!).
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How did we “know” this would work?
We had that

plBf):=(+1-c)(l+1+c)[](a— )
aEesSy

for some f from a finite set and ¢ “nice”. The Sy is the set of “possible”
Fourier coefficients of our Frey curve.

The only way this can fail to bound p is if we have By(f) = 0 for every
suitable /.

We claim that this can never happen if f is an irrational form, if our Frey
curve is defined over Q (Sturm bounds!).

It can also never happen if, say, our Frey curve (defined over Q) has a
rational 2-torsion point and f is a rational form, corresponding to and
elliptic curve without rational 2-torsion.
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