Rational Points on Curves
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Assumptions

Prerequisites:

Galois Theory.
Algebraic Number Theory.
p-adic Numbers.

Algebraic Curves/Algebraic Geometry.

Elliptic Curves.

Warning: some of the mathematics will be only approximately correct.

“In mathematics you don't understand things. You just get used to
them.” John von Neumann
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Basic Philosophy

A Basic Philosophy of Arithmetic Geometry: The geometry of an
algebraic variety governs its arithmetic.

A Central Question of Arithmetic Geometry: How does the geometry
govern the arithmetic?

Think of varieties as defined by systems of polynomial equations in affine
or projective space. An affine variety V C A” defined over a field k is
given by a system of polynomial equations

f]_(Xl,...,Xn) = 0,
f,‘Gk[Xl,...,Xn].
fm(x1,...,xn) =0,

For L D k, the set of L-points of V is
V(L) ={(a1,...,an) € L" : fi(a1,...,an) =0fori=1,..., m}.
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A projective variety V C P” defined over k is given by a system of
polynomial equations

fl(Xo, v ,Xn) = 0,
Vo : fi € k[xo, ..., xn] are homogeneous.

fm(x0, ..., xn) =0,
For L D k, the set of L-points of V is
V(L) = {(ao, .. .,an) € L"™™N{0} : fi(a0,...,an) =0fori=1,...,m}/ ~,

where (ag,...,an) ~ (bo, ..., ap) if there is some X € L* such that
)\a;:b; fori:O,...,n.

A variety V C P” is covered by n+ 1 affine patches:

Vn{x =1} i=0,1,...,n.
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Local Methods

We're interested in understanding V(Q) for varieties defined over Q. More

generally, if k is a number field, we're interested in V/(k) for varieties
defined over k.

In particular, @ C R, and Q C Q,, for all primes p. Think of R = Q.
Note V(Q) € V(Qp) for all p (including c0). So,

V(Q,) =0 = V(Q)=0.
Example

Vi x2+y?+22=0, vV c P2
Note V(R) =0, so V(Q) = ). But also, V(Q2) = 0.
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Local Methods

Definition

Let V be a variety defined over Q. We say that V has points
everywhere locally if V(Q,) # 0 for all p (including o).

Trivial observation: V(Q) # (0 = V has points everywhere locally.

Theorem (Hasse—Minkowski)

Let V C P" be a quadric (n > 3), defined over Q. Then the following are
equivalent:

@ V has points everywhere locally;
o V(Q) # 0 (V has global points).

We say, quadrics satisfy the Hasse principle.

Fact

For varieties V' defined over Q (or a number field), there is an algorithm to
decide if V has points everywhere locally.
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Dimension

We classify varieties by dimension, a non-negative integer: 0,1,2,....

Fact

A variety V. C A" or P", defined by a single polynomial equation
V : f =0, where f is a non-constant polynomial, has dimension n — 1.

Example
Vi C Al Vi - xX3+x+1=0 has dimension 0.
Vo C A Vo : y>=x%+1, has dimension 1.
Vs C P2, Vs . x3+y>+22=0, has dimension 1.

Vy C P, Ve : B+y3+2+wt=0, has dimension 2.

Varieties of dimension 1,2, 3, ... are called curves, surfaces, threefolds,
etc.
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Smooth

Let V be an affine variety V C A” of dimension d, defined over a field k,
and given by a system of polynomial equations

fi(xt,...,xn) =0,
vV : fi € k[x1,...,xn].
fm(x1,...,xn) =0,

We say that P € V/(k) is smooth if the matrix

rank (ﬁ(P)> =n—d.
0xj i=1,..m, j

=1,....m, j=1,...,n

We say that V is smooth or non-singular if it is smooth at all points

P e V(k).

If V C P", we say that V is smooth if all the affine patches V N {x; = 1}
are smooth.
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Example

Let
C : y?>="f(x)

where f is a non-constant polynomial. Then P = (a, b) € C is singular iff
(2a — /(b)) = (00).

So
2a=0, a’=f(b), f'(b)=0.

If char(k) # 2, then f(b) = f/(b) = 0. So C has a singular point if and
only if Disc(f) = 0. So C is smooth iff Disc(f) # 0.
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Example
Let V C P" (defined over k) be given by

V o f(xoy...,xn) =0,

where f # 0 is homogeneous. Then V is singular if and only if there is

P € V(k) such that

of of
PV =" =5 (P)=0.

— Oxp
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Curves

We will restrict to curves.
Definition

By a curve C over a field k, we mean a smooth, projective, absolutely
irreducible (or geometrically irreducible), 1-dimensional k-variety.

Rational Points: Given C/Q, we want to understand C(Q).
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Example: Reducibility

Example
Consider the variety V C A? given by the equation

Vi xb—1=y%2+2y.
Can rewrite as
V:y+1-x)y+1+x3=0.

So
V=VVuW,
where
Viiy+1—x3=0, Vo i y+1+x3=0.

Note V is reducible, but V4 and V; are irreducible. To understand V(Q)
enough to understand V4(Q) and V2(Q).
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Example: Absolute Reducibility

Example
Vo:2x8—1=y%+2y.
V is irreducible, but absolutely reducible since
Vg={r+1+v23=0}u{y+1-v23=0}.
If (x,y) € V(Q) then
y+1+vV2x3=y+1-v2x®=o.

In other words

So V(Q) = {(0,-1)}.

Moral: To understand rational points on varieties, it is enough to
understand rational on absolutely irreducible varieties.
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Genus
We classify curves by genus. This is a non-negative integer: 0,1,2,....
Example
If
C/k : F(x,y,z) =0, C c P?

is smooth, where F € k[x, y, z] is homogeneous of degree n, then C has
genus (n—1)(n—2)/2.

Example
Let

C/k : y?* = f(x), C C A2 (f € k[x] non-constant).

If C is smooth and deg(f) = n then

() [(@-1/2 doa
enus =
s (d—2)/2 d even.




Curves of Genus 0

Theorem

Let C be a curve of genus O defined over k. Then C is isomorphic (over k)

to a smooth plane curve of degree 2 (i.e. a conic). Moreover, if C(k) #
then C is isomorphic over k to P*.

Theorem

(The Hasse Principle) Let C/Q be a curve of genus 0. The following are
equivalent:

0 C(Q) #0;
Q@ C(R) # 0 and C(Qp) # 0 for all primes p.
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Theorem

(The Hasse Principle) Let C/Q be a curve of genus 0. The following are
equivalent:

0 C(Q) #0;
Q@ C(R) # 0 and C(Qp) # 0 for all primes p.

Theorem (Legendre, Hasse)
Let

C: ax®>+ by’ +cz>=0, a, b, c non-zero, squarefree integers.

The following are equivalent:
0 C(Q) #0;
@ C(R) # 0 and C(Qp) # O for all primes p.
© C(R) # 0 and C(Qp) # O for all primes p | 2abc.

Samir Siksek 16 / 24



Genus 1

Theorem

If C is a curve of genus 1 over a field k and Py € C(k), then C is
isomorphic over k to a Weierstrass elliptic curve

yzz + aixyz + a;:,yz2 =x3 4+ azxzz + a4xz2 + a623 C IE”2,

where the isomorphism sends Py to (0 : 1 :0).

(Mordell-Weil) Moreover, if k = Q or a number field, then C(k) is a
finitely generated abelian group with Py as the zero element.

@ There is no known algorithm for deciding if C(Q) # 0.

@ There is no known algorithm for computing a Mordell-Weil basis for
C(Q) if it is non-empty.

But there is a descent strategy that usually works.
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Failure of the Hasse Principle in Genus 1

Example
Let

C:33+434523=0. (C is a curve of genus 1 in P?)

Then
Q@ C(R) # 0 and C(Qp) # 0 (C has points everywhere locally);
@ C(Q) =0 (C has no global points).

In other words, C is a counterexample to the Hasse principle.

Exercise

Show that X* — 17 = 2Y? (also a curve of genus 1) is a counterexample
to the Hasse principle.
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Genus > 2

Theorem (Faltings) J

Let C be a curve of genus > 2 over a number field k. Then C(k) is finite.

@ There is no known algorithm for computing C(k).

@ There is no known algorithm for deciding if C(k) # 0.
But there is a bag of tricks that can be used to show that C(k) is empty,
or determine C(k) if it is non-empty. These include:

@ Quotients;

@ Descent;

© Chabauty;

Q Mordell-Weil sieve.

The purpose of these lectures is to get a feel for each of these methods
and see it applied to a particular example.

Samir Siksek 19 / 24



Quotients

Let C be a curve over a field k. A quotient is curve D/k with a

non-constant morphism
¢:C—=D

also defined over k.

Lemma (Trivial Observation)
d(C(k)) C D(k). If we know D(k), we can compute C(k). J
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Quotients

Example

Let
C: Y?>=AX+BX*+ X2+ D, A B,C,DeZ,

and suppose disc(AX® + BX* + CX2 + D) # 0. So C has genus 2. Let
E1 : y?> = Ax3+Bx?>+ Cx+D, E» : y? = Dx3+ Cx*+ Bx + A.
Then E;, E; are elliptic curves over Q. We have non-constant morphisms
¢1:C—E,  (X,Y) = (X2Y),
and
¢2: C— Ep, (X,Y)»—)(%,%).

If the ranks of either E; is 0 we can determine E;(Q) (which is finite) and
so C(Q).
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Example
C: Y?>=13X°—1.

Exercise: C has points everywhere locally.

Take E: y> =x3+13 and ¢ : C — E to be given by
(X,Y) = (=1/X2,Y/X3). Now E(Q) = {o0}. So
C(Q) € ¢ *(o0) = {(0, ), (0,—1)}. So C(Q) = 0.

Example
C: Y?>=11x%-19.
Here:

@ C has points everywhere locally.
4 El(@) = 7 and E2(Q) = 7.
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Example
C: Y?>=11Xx°%—-19.

Here:

@ C has points everywhere locally.
o El((@) = 7 and E2(Q) =7.
Let p be a prime of good reduction. Note the commutative diagram:

CQ —— > E(Q) X BA(Q) ¢ Z X Z

| ¢ | /

C(Fp) ——— E1(Fp) x Ex(F)p)

@ ¢ = (¢1,¢2); red denotes reduction modulo p;

o fix generators Py, P> for E1(Q), Ex(Q) respectively and let
77(”77 n) = (mP17 nPZ);

® 1 = redon.
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Let p be a prime of good reduction. Note the commutative diagram:

C(Q) ——2— E£(Q) x £(Q) G — L1

[re ¢ [re /

C(Fp) ————— E1(IFp) x Ex(Fp)

(red 09)(C(Q)) C ¢(C(Fp)) N p(Z X Z).

Exercise: Use this with p = 7 to show that C(Q) = 0.

Lemma J
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