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Abstract. We solve several multi-parameter families of binomial Thue equa-

tions of arbitrary degree; for example, we solve the equation

5uxn − 2r3syn = ±1,

in non-zero integers x, y and positive integers u, r, s and n ≥ 3. Our ap-

proach uses several Frey curves simultaneously, Galois representations and
level-lowering, new lower bounds for linear forms in 3 logarithms due to Mignotte

and a famous theorem of Bennett on binomial Thue equations.

1. Introduction

The most radical idea in the recent study of Diophantine equations has been
the introduction of the ‘Frey curve’ [16], [17]. This has lead to the resolution of
many infamous Diophantine problems; most notable among these is Wiles’ proof of
Fermat’s Last Theorem [33], [31].

In this paper we demonstrate, by way of example, that the simultaneous use of
several Frey curves—when available—is an even more powerful tool for the study of
Diophantine equations. This ‘multi-Frey’ approach often resolves with ease equa-
tions that would otherwise seem utterly hopeless.

We illustrate our purpose by completely solving several multi-parametric families
of Thue equations. There is a broad literature on this topic, starting from the
pioneering work of Thomas [32]. Authors were mainly concerned with one- or two-
parametric families of Thue equations of fixed degree; see for example [18] for a
survey. However, in a remarkable paper [2], Bennett solves an infinite family of
Thue equations of arbitrary degree using the hypergeometric method and linear
forms in logarithms. Indeed, he showed that if b, n are integers with b 6= 0, −1 and
n ≥ 3, then the equation

|(b+ 1)xn − byn| = 1
has exactly one solution in positive integers x, y, which is given by x = y = 1.

As in Bennett’s theorem, our main results concern binary Thue equations of
arbitrary degree.

Theorem 1. Suppose 3 ≤ q < 100 is a prime. The solutions to the equation

(1) quxn − 2ryn = ±1, x, y non-zero integers, u, r ≥ 0, n ≥ 3

Date: April 11, 2006.
2000 Mathematics Subject Classification. Primary 11F80, 11D61, Secondary 11D59, 11J86,

11Y50.
Key words and phrases. Diophantine equations, Frey curves, level-lowering, linear forms in

logarithms, Thue equations.
Y. Bugeaud’s work is supported by the Austrian Science Foundation FWF, grant M822-N12.

S. Siksek’s work is funded by a grant from Sultan Qaboos University (IG/SCI/DOMS/02/06).

1



2 YANN BUGEAUD, MAURICE MIGNOTTE, SAMIR SIKSEK

are given in Table 8.

Theorem 2. Suppose 3 ≤ q2 < q1 ≤ 31 are primes. The solutions to the equation

(2) qu1x
n − qv2y

n = ±1, x, y non-zero integers, u, v ≥ 0, n ≥ 3

are given in Table 9.

Theorem 3. Suppose q = 5 or 7. The solutions to the equation

(3) quxn − 2r3syn = ±1, x, y non-zero integers, u, r, s > 0, n ≥ 3

are given in Table 10.

The reader will note that equations (1), (2) involve 5 unknowns, whereas equa-
tion (3) involves 6 unknowns. Moreover, many of these equations have non-trivial
solutions.

Our tools for proving Theorems 1–3, apart from the multi-Frey approach, are
a recent estimate for linear forms in three logarithms by Mignotte [24], and the
aforementioned theorem of Bennett. Of course, to apply the multi-Frey approach
one has to assume—just as in the Frey approach—the modularity of elliptic curves
proved by Wiles and others [33], [31], [11], [15], [8], Ribet’s Level-Lowering Theorem
[25], and results on the irreducibility of Galois representations due to Mazur and
others [23].

We note in passing that a recent paper of Bennett [3] solves equations of the
form axn − byn = ±1 where ab = 2r3s. Bennett’s approach uses three Frey curves,
but it is not multi-Frey in our sense. We call Bennett’s approach in [3] ‘repeated
single-Frey’ and we explain the difference between the two approaches in Section 5.

We are indebted to the referee for several insightful comments. We warmly
thank the ‘Centre de Calcul MEDICIS’ at the École Polytechnique, where most of
the computation have been done.

2. Essential Definitions and Notation

2.1. Newforms and Galois Representations. By a newform of levelN we mean
a normalized cuspidal eigenform of weight 2 and belonging to the new space at level
N . We shall think of newforms in terms of their q-expansions around infinity and
write them thus:

(4) f = q +
∑
n≥2

cnq
n.

As is well-known, the coefficients cn generate a finite extension K/Q that is totally
real, and moreover these coefficients are all algebraic integers. If K = Q, we say
that the newform f is rational, otherwise we say it is irrational.

For an elliptic curve E, and for prime l of good reduction for E, we write ]E(Fl)
for the number of points on E over the finite field Fl, and let al(E) = l+1−]E(Fl).

Notation. Suppose E is an elliptic curve, f is a newform and p a prime. We
write E ∼p f if the Galois representation on the p-torsion of E arises from f .

Suppose E1, . . . , En are elliptic curves, f1, . . . , fn are newforms, and again p is
a prime. Write E and f for the n-tuples E = (E1, . . . , En) and f = (f1, . . . , fn). By
E ∼p f we simply mean that Ei ∼p fi for i = 1, . . . , n.

The following lemma is perfectly standard; see [28, page 196], [4, page 7], [20,
Proposition 5.4] for the first part, and [21, Prop. 3] for the second part.
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Lemma 2.1. Suppose f is a newform of level N represented by a q-expansion as
in (4), with coefficients generating a number field K. Suppose E is an elliptic curve
over Q of conductor N ′ with E ∼p f . Then there is some prime ideal p of K such
that p | p and for all primes l,

(a) if l - pNN ′ then al(E) ≡ cl (mod p),
(b) if l - pN but l ‖ N ′ then ±(l + 1) ≡ cl (mod p).

Moreover, if f is rational, then the above can be relaxed slightly as follows: for
all primes l,

(a′) if l - NN ′ then al(E) ≡ cl (mod p),
(b′) if l - N but l ‖ N ′ then ±(l + 1) ≡ cl (mod p).

Notice that in the second part of the Lemma, where f is supposed to be rational,
we do not exclude the case l = p. We shall also need the following result of Kraus
on congruences of newforms.

Proposition 2.2. (Kraus [19]) Suppose f is a newform of level N with q-expansion
as in (4). Let K = Q(c2, c3, . . .) be the number field generated by the coefficients cn
appearing in the q-expansion of f . Let

M = lcm(4, N), µ(M) = M
∏
q|M,

q prime

(
1 +

1
q

)
.

Suppose that p is a prime ideal of K such that the following two conditions hold:
(i) for every prime l ≤ µ(M)/6, l - 2N , we have

l + 1 ≡ cl (mod p);

(ii) for every prime l ≤ µ(M)/6, l | 2N , l2 - 4N , we have

(l + 1)(cl − 1) ≡ 0 (mod p).

Then for every prime number l - 2N we have l + 1 ≡ cl (mod p).

2.2. Elliptic Surfaces. The Frey curves that we present later are most conve-
niently thought of as elliptic curves over the field Q(Ψ).

If k is a field, then an elliptic curve EΨ over the field k(Ψ) naturally defines a
fibered elliptic surface E → A1 (note that we disregard the fiber at infinity). If
ψ ∈ k, we write Eψ for the fiber at ψ; this is simply obtained by replacing Ψ with
ψ. The generic fiber of E → A1 is just our original curve EΨ over k(Ψ).

Definition. Let S be a finite set of primes. By an S-integral elliptic surface we
mean a fibered elliptic surface E → A1 defined over Q whose generic fiber EΨ

is given by a Weierstrass equation with coefficients in ZS [Ψ]. If E → A1 is an S-
integral elliptic surface and l 6∈ S is a prime, and if the curve Eφ/Fl is non-singular
or nodal for all φ ∈ Fl, then we shall say that l is a prime of moderate reduction
for E → A1.

It will be convenient to drop the distinction between the surface E → A1 and its
generic fiber EΨ and simply call EΨ an elliptic surface. The following elementary
Lemma will be useful.

Lemma 2.3. Let S be a finite set of primes and suppose EΨ is an S-integral elliptic
surface. Write c4, ∆ for the usual quantities associated to the Weierstrass model,
and let R be their resultant (regarded as polynomials in Ψ). If l 6∈ S is a prime
such that ordl(R) = 0, then l is a prime of moderate reduction for EΨ.
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3. Frey Curves (or Surfaces)

In this section we apply the modular approach to the equations (1)–(3) under
suitable, but mild, hypotheses. Ordinarily, one would have to construct a Frey
curve or curves associated to our equation, show that the Galois representation is
irreducible (under suitable hypotheses) using the results of Mazur and others [23],
and modular by the work of Wiles and others [33], [31], [11], [15], [8], and finally
apply Ribet’s Level-Lowering Theorem [25]. However, one sees that any equation
of the form (1)–(3) is a special case of each of the equations Axn+Byn+Czn = 0,
Axn+Byn = Cz2 and Axn+Byn = Cz3. Fortunately, suitable Frey curves and the
details of level-lowering have been worked out for these equations respectively by
Kraus [19], Bennett and Skinner [4], and Bennett, Vatsal and Yazdani [5]; we have
merely applied their recipes. It is however convenient to change notation a little,
so as to be able to deal with equations (1)–(3) in a uniform way. Before doing
this we remark that for small exponents, equations (1)–(3) can be solved using
standard techniques for Thue equations [6]; these techniques are implemented in
the computer algebra system MAGMA [7] and we did use them to solve equations (1)–
(3) for exponents n = 3, 4, 5 (observe that there is no restriction in assuming that
the exponents u, r, s, v are smaller than n). Hence there is no harm in assuming
that the exponent n is a prime ≥ 7.

We concern ourselves in this section with the equation

(5) αxp − 2rβyp = 1,

where

α, β are non-zero, coprime and odd,(6)

0 ≤ ordq α, ordq β < p for all primes q.(7)

We furthermore restrict our attention to solutions (p, r, x, y) satisfying the following
conditions

p ≥ 7 is prime, 0 ≤ r < p,(8)

x, y are non-zero integers(9)

either r > 0 or y is even,(10)

2rβyp 6= ±2.(11)

The conditions p ≥ 7 and 2rβyp 6= ±2 are needed later on to ensure the irreducibil-
ity of the Galois representations on the p-torsion of the Frey curves.

We shall associate our putative solution of equation (5) to three different Frey
curves (or surfaces depending on our point of view), one from each of the following
families that we now introduce. The ‘F-family’:

F 1
Ψ : Y 2 = X3 + (2Ψ + 1)X2 + (Ψ2 + Ψ)X,

F 2
Ψ : Y 2 = X3 − (2Ψ + 1)X2 + (Ψ2 + Ψ)X.

The ‘G-family’:

G1
Ψ : Y 2 +XY = X3 − Ψ

64
X, G2

Ψ : Y 2 = X3 +X2 − Ψ
4
X,

G3
Ψ : Y 2 = X3 −X2 − Ψ

4
X, G4

Ψ : Y 2 = X3 + 2X2 −ΨX.
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Table 1. Frey Curves of the F- and G-Family

Case Conditions on r and/or y F-Frey curve L1 G-Frey curve L2

y even and r 6= 4, 6
(I) or F 1

Ψ 2 G1
Ψ 2

y odd and r ≥ 7
(II) y even and r = 4 F 1

Ψ 1 G1
Ψ 2

(III) r = 6 F 1
Ψ 2 G1

Ψ 1
(IV) y odd and r = 5 F 1

Ψ 2 G2
Ψ 23

(V) y odd and r = 4 F 1
Ψ 1 G2

Ψ 23

(VI) y odd and r = 3 F 1
Ψ 23 G2

Ψ 25

(VII) y ≡ β (mod 4) and r = 2 F 1
Ψ 23 G2

Ψ 22

(VIII) y ≡ −β (mod 4) and r = 2 F 1
Ψ 23 G3

Ψ 23

(IX) y odd and r = 1 F 2
Ψ 25 G4

Ψ 27

Table 2. Frey Curves of the H-Family, for 3 | β

Case Conditions on β, y H-Frey curve L3

(i) ord3(β) = 3 H1
Ψ 1

3 | y and ord3(β) = 1, 2
(ii) or H1

Ψ 3
ord3(β) ≥ 4

(iii) 3 - y and ord3(β) = 2 H1
Ψ 33

(iv) 3 - y and ord3(β) = 1 H1
Ψ 34

Table 3. Frey Curves of the H-Family, for 3 | α

Case Conditions on α, x H-Frey curve L3

(i) ord3(α) = 3 H2
Ψ 1

3 | y and ord3(β) = 1, 2
(ii) or H2

Ψ 3
ord3(α) ≥ 4

(iii) 3 - y and ord3(α) = 2 H2
Ψ 33

(iv) 3 - y and ord3(α) = 1 H2
Ψ 34

The ‘H-family’:

H1
Ψ : Y 2 + 3XY −ΨY = X3, H2

Ψ : Y 2 + 3XY + (Ψ + 1)Y = X3,

H3
Ψ : Y 2 − 3XY + ΨY = X3.

Before giving our main Proposition on level-lowering we list some useful proper-
ties of these Frey curves.

Lemma 3.1. • All primes l 6= 2 are primes of moderate reduction for the
surfaces in the F - and G-families. All primes l 6= 3 are primes of moderate
reduction for the surfaces in the H-family.

• If k is any field of characteristic 6= 2 then the fibers F iφ and Giφ are non-
singular for all φ ∈ k\ {−1, 0} and nodal for φ = −1, 0.
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Table 4. Frey Curves of the H-Family, for 3 - α, β

Case Conditions on β, x, y H-Frey curve L3

(i) 3 | y H1
Ψ 3

(ii) 3 | x H2
Ψ 3

(iii) 3 - xy and 2rβyp ≡ 8 (mod 9) H1
Ψ 32

(iv) 3 - xy and 2rβyp ≡ 2, 5 (mod 9) H1
Ψ 33

(v) 3 - xy and 2rβyp ≡ 4 (mod 9) H3
Ψ 32

(vi) 3 - xy and 2rβyp ≡ 1, 7 (mod 9) H3
Ψ 33

• If k is any field of characteristic 6= 3 then the fibers Hi
φ are non-singular

for all φ ∈ k\ {−1, 0} and nodal for φ = −1, 0.

Proof. The Lemma follows from a few simple computations. First we compute the
resultants of c4 and ∆ and find these to be powers of 2 for members of the F -
and G-families and powers of 3 for members of the H-family. The first part of the
Lemma now follows from Lemma 2.3.

The discriminants of the generic fibers F iΨ and GiΨ are of the form

2lΨm(Ψ + 1)n,

for some integers l, m, n with m, n > 0. This shows that if φ 6= −1, 0 and the
characteristic is not 2, then F iφ and Giφ are non-singular. If φ = −1 or 0 and the
characteristic is not 2, then by the above c4 6= 0. Hence the fibers F iφ and Giφ are
nodal. This proves the second part of the Lemma.

The third part follows similarly on observing that the discriminants for the
generic fibers Hi

Ψ are of the form

3lΨm(Ψ + 1)n

for some integers l, m, n, with m,n > 0. �

If R is a non-zero integer we denote by Rad(R) the product of the distinct primes
dividing R. If q is a prime, we denote by Radq(R) the product of distinct primes
dividing R and not equal to q.

Proposition 3.2. Suppose α, β are integers satisfying conditions (6)–(7). Suppose
(p, r, x, y) is a solution to equation (5) satisfying conditions (8)–(11). Let FΨ, GΨ,
HΨ be respectively the F -, G-, H-Frey curves given by Tables 1–4. Let L1, L2, L3

be also as given by these tables and let

(12) N1 = L1 Rad(αβ), N2 = L2 Rad(αβ), N3 = L3 Rad3 (2rαβ) .

Let ψ = 2rβyp. Then there exist newforms f , g, h of levels N1, N2, N3 respectively
such that

(13) Fψ ∼p f, Gψ ∼p g, Hψ ∼p h.

Remark. In the light of the above proposition, it will be convenient to introduce
the following terminology. If f = (f, g, h) is a triple of newforms of levels N1, N2,
N3 as above, and (p, r, x, y) is a solution to equation (5) satisfying all the foregoing
conditions such that the relations (13) are satisfied with ψ = 2rβyp then we say
that the solution (p, r, x, y) arises from the triple of newforms f via the triple of
Frey curves EΨ = (FΨ, GΨ,HΨ). Since there are only finitely many newforms at
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any particular level, we see that there are only finitely many triples of newforms
that can give rise to our solutions. For each such triple f we can attempt to solve
equation (5) under the assumption that the solution arises from the triple f. If we
can do this for all possible triples f we will have found all solutions to equation (5)
satisfying conditions (8)–(11).

Often, it is simply more convenient to work with the pairs EΨ = (FΨ, GΨ) and
f = (f, g) and ignore the information Proposition 3.2 gives about the H-Frey curve.

Proof of Proposition 3.2. We note that equation (5) is a special case of equations
Axp + Byp + Czp = 0, Axp + Byp = Cz2 and Axp + Byp = Cz3. Frey curves
and level–lowering are detailed for these equations in respectively [19], [4], [5]. The
Proposition is quite simply obtained by applying the recipes in those papers to this
special case.

It is here that we make use of the condition (9), which is needed to ensure that the
curves F iψ, Giψ and Hi

ψ are non-singular. The papers [4], [5] also add the condition
that xy 6= ±1. This is needed in their context to ensure that the Frey curves do not
have complex multiplication. In our setting we would like to ensure that the fibers
Giψ and Hi

ψ do not have complex multiplication. It turns out that condition (11),
namely that ψ = 2rβyp 6= ±2, is sufficient to rule out complex multiplication.
Indeed, a little computation shows that the j-invariants of the curves Giψ, Hi

ψ are
never integral except possibly in the (excluded) case when ψ = −2. Let us give the
details of this argument for G1

ψ, the other cases being similar. A straightforward
computation on a computer algebra system shows that the j-invariant of G1

ψ is

1728ψ3 + 6912ψ2 + 9216ψ + 4096
ψ3 + ψ2

.

If this is integral, then the denominator ψ3 + ψ2 must divide the resultant of the
numerator and denominator regarded as polynomials in ψ. This resultant is 230.
Since ψ = 2rβyp is even by condition (10) we see that the only possible value for
ψ is −2 which we have excluded in our hypotheses.

Finally, for p = 7, we must ensure that the Galois representations on the 7-
torsion of the curves F iψ, Giψ and Hi

ψ are irreducible [5, proof of Lemma 3.1]. Note
that the F iψ and Giψ have points of order 2. If the Galois representation on the
7-torsion of one of them is reducible, then F iψ or Giψ corresponds to a non-cuspidal
point on X0(14), and so is known to have j-invariant j = −153 or 2553. But this
is impossible as we have already shown that the j-invariants of F iψ and Giψ are not
integral. Thus the Galois representations on the 7-torsion of the curves F iψ, Giψ are
irreducible.

Suppose now that the Galois representation on the 7-torsion of the curve Hi
ψ

is reducible. As Hi
ψ has the point (0, 0) of order 3, the curve Hi corresponds to

a non-cuspidal point on X0(21), and so [5, proof of Lemma 3.1] has one of the
following four j-invariants:

33 · 53

2
, −32 · 56

23
, −33 · 53 · 3833

27
,

32 · 53 · 1013

221
.

Equating the j-invariants of Hi
ψ to these four values and solving gives us

ψ = 2, −3,
3

125
, −128

125
.
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But ψ = 2rβyp is integral and even, and so we see that ψ = 2 which we have
excluded by our hypothesis (11). �

4. Bounding the Exponent p

Level-lowering often gives a way of bounding the exponent of a Diophantine
equation. This idea is originally due to Serre [28, pages 203–204], and is now quite
standard [4, Proposition 4.3], [10, Section 7], [29, Section 6]. In this section we give
a diagonal version of Serre’s idea, using two or three Frey curves simultaneously to
maximize the chances of success. Our objective is to bound the exponent p in equa-
tion (5), if possible. The following notation will greatly simplify later exposition.
Suppose S is a finite set of primes and let EΨ be an S-integral elliptic surface, and
l 6∈ S a prime of moderate reduction for EΨ. Let f be a newform with q-expansion
as in (4) and coefficients cl generating the number field K. For φ ∈ Fl let

D′
l(Eφ, f) =

{
NormK/Q(al(Eφ)− cl), if Eφ is non-singular,
NormK/Q

(
(l + 1)2 − cl

2
)
, if Eφ is nodal,

and

Dl(Eφ, f) =

{
D′
l(Eφ, f), if K = Q,

l ·D′
l(Eφ, f), otherwise.

If f = (f1, . . . , fn) is an n-tuple of newforms, EΨ = (E(1)
Ψ , . . . , E

(n)
Ψ ) is an n-tuple

of S-integral elliptic surfaces, and l 6∈ S is a prime of moderate reduction for all of
them then we let

Bl,φ(EΨ, f) = gcd
{
Dl(E

(i)
φ , fi) : i = 1, . . . , n

}
,

and
Bl(EΨ, f) = lcm {Bl,φ(EΨ, f) : φ ∈ Fl} .

Proposition 4.1. Let α, β be integers satisfying conditions (6)-(7). Suppose that
(p, r, x, y) is a solution to equation (5) satisfying conditions (8-11). Let FΨ, GΨ,
HΨ be the Frey curves and L1, L2, L3 be the integers given by Tables 1–4. Let N1,
N2, N3 be given by (12). Suppose that f , g, h are newforms of levels N1, N2, N3

respectively giving rise to the solution (p, r, x, y).

(a) If EΨ = (FΨ, GΨ), f = (f, g) and l - 2 Rad(αβ) is prime then p | Bl(EΨ, f).
(b) If EΨ = (FΨ, GΨ,HΨ), f = (f, g, h) and l - 6 Rad(αβ) is prime then p

divides Bl(EΨ, f).

Proof. By definition of the phrase ‘arises from’ (see the remark after Proposition
3.2) we know that the relationships (13) hold with ψ = 2rβyp. Now suppose that
l - 2 Rad(αβ). From Lemma 3.1, we know that l is a prime of moderate reduction
for FΨ and GΨ. In particular, l is a prime of good or nodal reduction for the
fibers Fψ and Gψ. Thus the models Fψ, Gψ are minimal at l and moreover have
multiplicative reduction at l. It follows that l2 does not divide the conductors of
Fψ, Gψ. Neither does l divide the levels N1, N2 of f and g, since these are of the
form 2ε Rad(αβ) for some ε. Let φ be the image of ψ in Fl. Applying Lemma 2.1
we see that

p | Dl(Fφ, f), p | Dl(Gφ, g).
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Thus p | Bl,φ(EΨ, f) with EΨ = (EΨ, FΨ) and f = (f, g). From the definition of
Bl(EΨ, f) we deduce that p | Bl(EΨ, f) as required. This proves (a). The proof of
(b) is almost identical. �

The following is an immediate corollary to the above proof.

Corollary 4.2. Suppose that the hypotheses of Proposition 4.1 are satisfied, in
particular that the solution (p, r, x, y) arises from f via EΨ. Suppose that l is a
prime of moderate reduction for the surfaces in EΨ that does not divide the levels
of the newforms in f. Let

(14) Φl = {φ ∈ Fl : p | Bl,φ(EΨ, f)} ,
As usual write ψ = 2rβyp. Then ψ ≡ φ (mod l) for some φ ∈ Φl.

5. Some Remarks on the Multi-Frey Approach and
on the Repeated Single-Frey Approach

Let us briefly explain the advantage of our multi-Frey approach over earlier
approaches. Proposition 4.1 gives us an integer Bl(EΨ, f) and tells us that the
exponent p in our Diophantine equation (5) divides it. This information would
of course be useless if Bl(EΨ, f) = 0. In such a case we have failed to bound the
exponent p using the prime l. If on the other hand Bl(EΨ, f) 6= 0 then can list its
prime factors and p will be one of these; in this case we say that we have succeeded
in bounding the exponent p using the prime l.

With the single-Frey approach, we are computingBl(FΨ, f), Bl(GΨ, g), Bl(HΨ, h).
Let us suppose for illustration that f is a rational newform and so corresponds to
an elliptic curve F . Now Bl(FΨ, f) = 0 if and only there is some value φ ∈ Fl such
that Fφ is non-singular and

al(Fφ) = al(F ).

Since al(Fφ) and al(F ) both belong to the interval [−2
√
l, 2
√
l], it seems quite likely

that this will be the case from some φ ∈ Fl.
In [3], Bennett uses what we call a repeated single-Frey. Essentially this means

computing Bl(FΨ, f), and if this is found to be 0, then computing Bl(GΨ, g) and
if this is found to be 0, then computing Bl(HΨ, h). In the end we know that

p | gcd {Bl(FΨ, f), Bl(GΨ, g), Bl(HΨ, h)} .
Let us now contrast with our method. Write EΨ = (FΨ, GΨ,HΨ). Suppose also

for illustration that f , g, h are rational newforms corresponding to elliptic curves
F , G, H. Then Bl(EΨ, f) = 0 if and only if there is some φ ∈ Fl such that Fφ, Gφ,
Hφ are non-singular and

al(Fφ) = al(F ), al(Gφ) = al(G), al(Hφ) = al(H).

Notice that our method fails if there is some value φ ∈ Fl such that there three
equalities hold simultaneously. The repeated single-Frey fails if there are values φ1,
φ2, φ3 ∈ Fl such that

al(Fφ1) = al(F ), al(Gφ2) = al(G), al(Hφ3) = al(H).

It is evident that our approach is much more likely to succeed in obtaining a bound
for p.

Let us now suppose that both methods succeed. Then both will give a list of
possible values of the exponent p. The list of possible values given by our multi-Frey
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method is very likely to be smaller than that given by the repeated single-Frey. In
fact, p appears in the list given by the repeated single-Frey if and only if there are
values φ1, φ2, φ3 ∈ Fl such that

p | Dl(Fφ1 , f), p | Dl(Gφ2 , g), p | Dl(Hφ3 , h).

By contrast, p appears in the list given by the multi-Frey approach if and only if
there is some φ ∈ Fl such that

p | Dl(Fφ, f), p | Dl(Gφ, g), p | Dl(Hφ, h).

It is evident that the list of possible values of the exponent p given by the multi-Frey
method is at least as small, and probably smaller, than that given by the repeated
single-Frey.

6. First Examples

We would like to illustrate the use of Propositions 3.2 and 4.1 by using them to
prove some special cases of Theorem 1. These examples have been chosen to also
show the limitations of Proposition 4.1 and hence motivate the modular methods
that we introduce later on.

For the examples below (and for the proofs of Theorems 1–3), we will need
to explicitly compute all newforms at a given level. This can be done using the
modular symbols algorithm [30], [12]. Thankfully, the modular symbols algorithm
has been implemented as part of the computer algebra system MAGMA [7] by William
Stein, and we use this whenever we need to compute newforms.

Apart from the computation of newforms, we need the following remarkable
theorem of Bennett, mentioned previously in the introduction.

Theorem 4. (Bennett [2]) Suppose b, n are integers with b 6= 0, −1 and n ≥ 3.
Then the equation

|(b+ 1)xn − byn| = 1
has exactly one solution in positive integers x, y: namely x = y = 1.

Example 1. For our first illustrative example we look at the equation

5uxp − 2ryp = 1, xy 6= 0, 0 < u < p, p ≥ 7 is prime.

We may suppose that 0 ≤ r < p. If r > 0 or y is even then we take α = 5u and
β = 1. Otherwise rewrite the equation as (−y)p− 5u(−x)p = 1 and take α = 1 and
β = 5u. In either case we can apply Proposition 3.2 with Rad(αβ) = 5, although we
ignore the information this gives for the H-family. This is because we have found
that ignoring the H-family reduces the number of cases to be considered, and is
sufficient for our purpose.

Now Proposition 3.2 associates the putative solution to a pair of newforms f =
(f, g) of levels N1 = 5L1, N2 = 5L2 where L1, L2 are given by Table 1. We recall
that there are no newforms at levels 5, 10. This shows that cases (I–V) of Table 1
are impossible. Let us look at case (VI). Here we know that the solution (if it exists)
must arise from a pair of newforms f = (f, g) via E = (F 1

Ψ, G
2
Ψ), where f has level

40 and g has level 160. There is only one newform at level 40 which corresponds
to the elliptic curve 40A1 in Cremona’s table; we write f for this form. There are
three newforms at level 160. The first two, call them g1 and g2, correspond to
elliptic curves 160A1 and 160B1 respectively. The third is

g3 = q + 2
√

2q3 + q5 − 2
√

2q7 + · · · .
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Thus the solution (if it exists) must arise from one of the pairs fi = (f, gi) (i =
1, 2, 3) via E = (F 1

Ψ, G
2
Ψ). Now we compute

B3(EΨ, f1) = 0, B7(EΨ, f1) = 24, B3(EΨ, f2) = 4, B3(EΨ, f3) = 48.

Proposition 4.1 asserts that if our solution arises from fi and if l - 10 is prime
then p | Bl(E, fi). Since p ≥ 7 we see that there are no solutions satisfying the
conditions of Case (VI). Notice that we had computed B3(EΨ, f1) and found it to
be zero, thus it gives no information about the prime p; this is not a problem here
as B7(EΨ, f1) = 24. Cases (VIII) and (IX) were dealt with in a similar way to Case
(VI).

Only Case (VII) remains; this corresponds to r = 2 and y ≡ 1 (mod 4). Here
Proposition 3.2 tells us that any solution must arise from a pair of newforms
f = (f, g) via E = (F 1

Ψ, G
2
Ψ), where f has level 40 and g has level 20. Again f

corresponds to the elliptic curve 40A1, and since there is exactly one newform at
level 20, we see that g corresponds to 20A1. We now compute

B3(EΨ, f) = 0, B7(EΨ, f) = 0, B11(EΨ, f) = 0, B13(EΨ, f) = 0, . . .

and we are unable to bound p using Proposition 4.1. In fact Bl(EΨ, f) = 0 for all
primes l 6= 2, 5. To see this, note that the fibers F 1

4 and G2
4 are isomorphic to 40A1

and 20A1 respectively. Thus if l 6= 2, 5 is prime, and φ = 4 ∈ Fl then

Bl,φ(E, f) = gcd
{
al(F 1

φ)− cl, al(G2
φ)− dl

}
where c1 and dl are respectively the l-th coefficients of f and g. But cl = al(F 1

4 ) =
al(F 1

φ) and dl = al(G2
4) = al(G2

φ). Thus Bl,φ(E, f) = 0 and so Bl(E, f) = 0.
We should not be surprised that we fail to bound p here since there is a solution

that satisfies the conditions of Case (VII). Namely the solution u = 1, r = 2,
x = y = 1 and p arbitrary. We cannot prove that this is the only solution at this
stage. We merely note that we have shown that it has r = 2, y ≡ 1 (mod 4) and
that the solution must arise from the pair (40A1, 20A1) via (F 1

Ψ, G
2
Ψ).

Example 2. We now turn our attention to the equation

(15) 3uxp − 2ryp = 1, x, y non-zero integers, 0 < u < p.

We will solve this equation completely, though it will require more effort as, unlike
Example 1, we need to use the H-family information.

Without loss of generality we assume that 0 ≤ r < p. First suppose that r = 0
and y is odd. Then x is even. Letting α = 1 and β = 3u (and rewriting our
equation as (−y)p − 3u(−x)p = 1 we see that conditions (6)–(7) and (8)–(11) are
satisfied. By Proposition 3.2, the solution arises from a pair of newforms at level
6. Since there are no newforms at level 6 we have a contradiction, and deduce that
either y is even or r > 1. Now we let α = 3u, β = 1. Again the conditions (6)–(7)
and (8)–(11) are satisfied, unless 2rβyp = ±2 which corresponds to the solution
(u, r, x, y) = (1, 1,−1,−1). So suppose that (u, r, x, y) 6= (1, 1,−1,−1). Again we
apply Proposition 3.2. We know that there are no newforms at levels 2, 3, 6, 12.
Hence we deduce that we are in Cases (VI), (VIII), (IX) of Table 1 and Cases (iii),
(iv) of Table 3.

Suppose that we are in Case (VI) of Table 1; this corresponds to the condition
that y is odd and r = 3. Then the solution arises from newforms at levels 24 and
96 via the Frey curves F 1

Ψ and G2
Ψ respectively. There is only one newform f at

level 24; this corresponds to the elliptic curve 24A1 in Cremona’s tables. There are
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Table 5. The triple of values B5(EΨ, f), B7(EΨ, f), B11(EΨ, f)
where f = (f, gi, hj).

h1 h2 h3 h4

g1 60, 336, 528 60, 84, 0 60, 84, 264 0, 336, 528
g2 60, 336, 0 60, 84, 264 60, 84, 264 0, 336, 0

two newforms g1, g2 at level 96; these correspond to elliptic curves 96A1 and 96B1
respectively. Now there are two possibilities for the corresponding ‘H-situation’,
namely Cases (iii) and (iv) of Table 3. Suppose that we are in Case (iv): that is
3 - y and u = 1. Then our solution also arises from a newform at level 162 via H2

Ψ.
There are four newforms h1, . . . , h4 at level 162, which correspond respectively
to the elliptic curves 162A1, 162B1, 162C1, 162D1. Let EΨ = (F 1

Ψ, G
2
Ψ,H

2
Ψ).

According to Proposition 4.1, if the solution arises from the triple of newforms
f = (f, gi, hj) and l - 6 is prime then p | Bl(EΨ, f). In Table 5 we give the values of
of Bl(EΨ, f) for the primes l = 5, 7, 11.

Since p ≥ 7 we immediately obtain a contradiction except when f = (f, g2, h4).
In that situation p | 336 = 24 × 3× 7 and so it is possible that p = 7. However, we
continue to compute (for f = (f, g2, h4))

B13(EΨ, f) = 0, B17(EΨ, f) = 1224 = 23 × 33 × 17,

which gives a contradiction even for p = 7.
It follows that if we are in Case (VI) of Table 1 then we must be in Case (iii) of

Table 3. In particular r = 3, u = 2 and equation (15) becomes

9xp − 8yp = 1.

This has the solution (x, y) = (1, 1) and we know from Bennett’s Theorem above
that this must be the unique solution. Thus we have found all the solutions that
correspond to Case (VI).

Similarly if we assume that we are simultaneously in Case (VIII) and Case (iii)
we get a contradiction. Hence if we are in Case (VIII) then we must be in Case (iv)
and then r = 2, u = 1 and we deduce that the only solution is (x, y) = (−1,−1) as
before.

Finally if we are in Case (IX) we also deduce quickly that r = 1, u = 1 and the
only solution is (1, 1). We summarize by saying that the only solutions to equation
(15) are (u, r, x, y) = (2, 3, 1, 1), (1, 2,−1,−1), (1, 1, 1, 1).

Example 3. Consider the equation

13uxp − 2ryp = 1, x, y non-zero integers, 0 < u < p.

Again we may suppose that 0 ≤ r < p. If r > 0 or y is even we choose α = 13u,
β = 1. Otherwise let α = 1, β = 13u (note that we can rewrite our equation as
(−y)p− 13u(−x)p = 1). In either case Rad(αβ) = 13. We only consider Case (I) of
Table 1; all other cases can be effortlessly eliminated as before. Apply Proposition
3.2; This tells us that the solution arises from a pair of newforms at level 26 via
the pair of surfaces EΨ = (F 1

Ψ, G
1
Ψ).
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The newforms at level 26 are

f1 = q − q2 + q3 + q4 − 3q5 − q6 − q7 + · · · ,
f2 = q + q2 − 3q3 + q4 − q5 − 3q6 + q7 + · · · .

These correspond respectively to the elliptic curves 26A1 and 26A2 in Cremona’s
tables [12]. Writing f = (f1, f1), we easily compute B3(EΨ, f) = 15. However
Proposition 4.1 tells us that p | B3(EΨ, f), contradicting our assumption that p ≥ 7.
We compute also B3(EΨ, f) = 1 if f = (f1, f2) and B3(EΨ, f) = 3 if f = (f2, f1), also
giving contradictions. If f = (f2, f2) then we find that

B3(EΨ, f) = 7, B5(EΨ, f) = 5× 7, B7(EΨ, f) = 9× 7, B11(EΨ, f) = 60× 7, . . .

which shows that p = 7 for any hypothetical solution to equation (23). It is in-
structive to see why p = 7 cannot be ruled out by Proposition 4.1. Suppose l - 26
is prime. Let φ = 0 ∈ Fl; from Lemma 3.1 we know that the fibers F 1

φ/Fl and
G1
φ/Fl are nodal. From the definition given in the previous section we see that

Bl,φ(EΨ, f) = (l + 1)2 − c2l where cl is the l-th coefficient of f2. By definition,
Bl(EΨ, f) is divisible by Bl,φ(EΨ, f) which in turn is divisible by l+1− cl = ]E(Fl),
where E is the elliptic curve 26A2. According to [12] the curve E has a point of
order 7. It follows that 7 | Bl(EΨ, f) for all primes l - 26 and thus p = 7 cannot be
ruled out using Proposition 4.1. It turns out that even when we use the H-family
information, we cannot rule out p = 7 for a similar reason. It is still possible to
obtain a contradiction in the case p = 7. Thus suppose p = 7 and (r, x, y) is a
solution to the above equation that arises from f = (f2, f2) via EΨ = (F 1

Ψ, G
1
Ψ). Let

ψ = 2rβyp. Then we know that F 1
ψ ∼7 E. Notice that

l + 1− al(E) ≡ 0 (mod 7), al(Fψ) ≡ al(E) (mod 7)

for all but finitely many primes l. Thus ]Fψ(Fl) = l + 1 − al(Fψ) ≡ 0 (mod 7)
for all but finitely many primes l. By the Chebotarev Density Theorem, Fψ has a
Q-rational subgroup of order 7 (see [27, IV–6]). Since Fψ has full 2-torsion, this is
known to be impossible and we have deduced a contradiction.

7. A Negative Result

In Example 3, we had some trouble eliminating the exponent p = 7 due to the
existence of a rational newform f at the level predicted by Proposition 3.2 and
satisfying the congruence l+1− cl ≡ 0 (mod 7) for almost all primes l. The reader
will also recall that this congruence, which was the source of trouble, paradoxically
helped us to eliminate the exponent p = 7.

This difficulty is not confined to rational newforms. Fortunately a similar tech-
nique is available for non-rational newforms, but this technique needs extra care.
The following Lemma presents such a technique.

Lemma 7.1. Let α, β be integers satisfying conditions (6)–(7). Suppose that EΨ =
(FΨ, GΨ) or EΨ = (FΨ, GΨ,HΨ) is a Frey pair or triple and f = (f, g) or f =
(f, g, h) is a newform pair or triple having levels N1, N2 (and N3) as in Proposition
3.2. Suppose that newform f satisfies conditions (i) and (ii) of Proposition 2.2 for
some prime ideal p of K above p, where K is the field generated by the coefficients
of f . Suppose q is some prime satisfying the following three conditions.

(a) q 6= p.
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(b) q is a prime of moderate reduction for the surfaces in EΨ that does not
divide the levels of the newforms in f.

(c) The product

(16) ((q + 1)2 − c2q)
∏

φ∈Φq\{−1,0}
(aq(Fφ)− cq)

is not divisible by any prime ideal p′ | p of K satisfying p′ 6= p. Here Φq is
given by (14).

Then there is no solution to equation (5) satisfying conditions (8)–(11) that arises
from f via EΨ.

Proof. Suppose that there is some solution (p, r, x, y) to equation (5) satisfying
conditions (8)–(11) that arises from f via EΨ. Letting ψ = 2rβyp we see that
Eψ ∼p f. In particular Fψ ∼p f . Thus there is some prime p′ | p of K such that for
all primes l

• if l - pN and ψ 6≡ −1, 0 (mod l) then al(Fψ) ≡ cl (mod p′),
• if l - pN but ψ ≡ −1 or 0 (mod l) then ±(l + 1) ≡ cl (mod p′).

Applying this with q in place of l we see that either ψ 6≡ −1, 0 (mod q) in which
case aq(Fψ) ≡ cl (mod p′) or else ±(q + 1) ≡ cq (mod p′). However, by Corollary
4.2 we know that ψ ≡ φ (mod q) for some φ ∈ Φq. We deduce that p′ divides the
product in (16). Thus p′ = p.

Hence al(Fψ) ≡ cl (mod p) for all but finitely many primes l. However, by
the hypotheses of the Lemma, the newform f satisfies conditions (i) and (ii) of
Proposition 2.2, and must therefore satisfy the conclusion of that Proposition. In
particular l+1 ≡ cl (mod p) for all but finitely many l. It follows that p | ]Fψ(Fl) =
l + 1 − al(Fψ) for all but finitely many primes l. By [27, IV–6], the elliptic curve
Fψ has a Q-rational subgroup of order p. Since Fψ has full 2-torsion and p ≥ 7,
this is known to be impossible, and we have reached a contradiction. �

The above Lemma is inspired by examples of Kraus [19, pages 1155–1156]; in
those examples the possibility that the two primes p and p′ could be distinct is not
emphasized, although a priori we see no reason for them to be equal.

8. Predicting Exponents of Constants I

In most cases, for equations of the form (1)–(3), Proposition 4.1 allows us to show
that the exponent belongs to some finite, small set of possibilities. One may then
attempt to solve all the Thue equations for these particular exponents. In practice
it often turns out that there are too many Thue equations to consider and that the
coefficients of these are too large to enable us to solve them. We now assume that
p ≥ 7 is fixed, and give a method for predicting the exponents of the constants q1,
q2 etc. in equations (1)–(3). This method is a multi-Frey and a multi-dimensional
version of the method appearing in [9, Section 9], [29, Section 8].

It is convenient to consider a more general equation than (1)–(3), namely

(17) Au1
1 · · ·Aus

s x
p −Bv11 · · ·Bvt

t y
p = 1, x, y are non-zero integers.
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We impose the following restrictions

A1, . . . , As, B1, . . . , Bt are distinct primes,(18)

p ≥ 7 is prime,(19)

either y is even, or B1 = 2, all other Ai, Bi are odd(20)

0 < ui < p, 0 < vi < p,(21)

Bv11 . . . Bvt
t y

p 6= ±2.(22)

We let α = Au1
1 · · ·Aus

s . If B1 = 2 we let r = v1 and β = Bv22 · · ·Bvt
t . If B1 6= 2

(and so all of the Ai, Bi are odd) we let r = 0 and β = Bv11 · · ·Bvt
t . We see now that

any solution to equation (17) gives a solution to equation (5) with conditions (6)–
(7) and (8)–(11) satisfied, making all of the foregoing applicable. In (21) we have
imposed that all the ui, vi are non-zero. This may appear puzzling, but is needed
so that the value of Rad(αβ) does not depend on ui, vi. Thus by imposing these
restrictions we are able to apply Propositions 3.2 and 4.1 without knowing the
precise values of the exponents ui, vi; as stated previously our objective in this
section is to determine the exponents ui, vi having fixed p ≥ 7 at the outset.

Applying Proposition 3.2 shows that any solution arises from one of a set of
newforms triples (or pairs) f via a corresponding set of Frey surface triples (or
pairs) EΨ. We now would like to solve this equation under the assumption that
the solution arises from a fixed newform pair f = (f, g) (or triple f = (f, g, h)) via
the Frey surface pair EΨ = (FΨ, GΨ) (or triple EΨ = (FΨ, GΨ,HΨ)) where FΨ, GΨ

(and HΨ) belong respectively to the F -, G- (and H-)Family. To remind, in our
context, the phrase ‘arises from’ means that if we write ψ = Bv11 . . . Bvt

t y
p for the

putative solution of equation (17) then Fψ ∼p f and Gψ ∼p g (and Hψ ∼p h where
relevant).

Suppose l 6= 2, 3, and so it follows from Lemma 3.1 that l is a prime of moderate
reduction for the surfaces. Let Φl be as in (14). Corollary 4.2 tells us that, with ψ
as above, there is some φ ∈ Φl such that ψ ≡ φ (mod l). In other words, for some
φ ∈ Φl we have

Au1
1 . . . Aus

s x
p ≡ φ+ 1, Bv11 . . . Bvt

t y
p ≡ φ (mod l).

We will now restrict our prime l to be of the form np+1. The motivation for this is
that, even though we do not know x and y, we know that the residue classes of xp

and yp modulo l belong to relatively small subset of Fl, namely the subset of p-th
powers. Knowing this subset of p-th powers in Fl, together with Φl and employing
the discrete logarithm, is our strategy for deducing information about the ui, vi.

So suppose that l = np+ 1 is some prime. Let g ∈ F∗l be a primitive root. The
discrete logarithm with respect to g is the isomorphism F∗l → Z/(l−1) mapping gr

to the residue class of r modulo l−1. Since p | (l−1), the discrete logarithm can be
composed with the natural map Z/(l−1) → Fp to yield a surjective homomorphism
Ll,p,g : F∗l → Fp. To ease notation, write Ll for Ll,p,g, although it is implicitly
understood that this map depends on the choice of the primitive root l. Suppose
moreover that −1, 0 6∈ Φl. Then we know from the above that for some φ ∈ Φl,

u1Ll(A1)+· · ·+usLl(As) ≡ Ll(φ+1), v1Ll(B1)+· · ·+vtLl(Bt) ≡ Ll(φ) (mod p),

provided of course that l was chosen so as not to divide any of the integers Aj ,
Bj . Given sufficiently many primes satisfying all of the foregoing conditions, the
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problem of determining the uj , vj (which we recall are subject to (21)) reduces to
linear algebra over Fp.

In fact, it is now straightforward to deduce the following.

Proposition 8.1. With notation as above, let l1, . . . lk be primes satisfying the
following conditions:

• For all j, lj - 6A1 . . . AsB1 . . . Bt.
• For all j, the primes lj ≡ 1 (mod p).
• For all j, the residue classes −1, 0 6∈ Φj (where we write Φj for Φlj ).

Let
L = (L1, . . . , Lk) : Fl1 × · · · × Flk → Fkp,

where we write Lj for Llj . Define the s × k matrix A = (Lj(Ai)) and the t × k
matrix B = (Lj(Bi)). Suppose that (u1, . . . , us, v1, . . . , vt, x, y) is a solution to
equation (17), satisfying restrictions (18)–(22), and arising form f via EΨ as above.
Writing u = (u1, . . . , us), v = (v1, . . . , vt) we have the simultaneous congruences

uA ≡ L(c + (1, . . . , 1)), vB ≡ L(c) (mod p)

for some c ∈
∏

Φj.

Proof. The proof follows from the above, but let us just note that the condition lj -
6A1 . . . AsB1 . . . Bt simultaneously implies that lj are primes of moderate reduction
for the surfaces in EΨ, and that they do not divide the levels of the forms in f. �

Example 4. Consider the equation

17uxp − 11vyp = 1, xy 6= 0, 0 < u, v < p, p ≥ 7 is prime.

We assume that y is even; the case where y is odd is similar. Then according to
Proposition 3.2 any solution arises from a pair of newforms at level 374 = 2×11×17
via the Frey pair EΨ = (F 1

Ψ, G
1
Ψ). There are 5 newforms at level 374 and so 25 pairs

of newforms. We had no trouble eliminating 24 of these pairs using Proposition
4.1. The only troublesome pair is f = (f, f) where

f = q − q2 + θq3 + q4 + (θ2 − 4)q5 − θq6 + (−θ3 − 2θ2 + 7θ + 10)q7 + · · ·
with coefficients in K = Q(θ) where θ4 − θ3 − 10θ2 + 9θ + 16 = 0. We compute

B3(EΨ, f) = 35280 = 24 × 32 × 51 × 72,

thus we know by Proposition 4.1 that any solution must have p = 7. The trouble
is that Bl(EΨ, f) is divisible by 7 for all 3 ≤ l < 100 with l - 374. It seems that we
are unable to eliminate p = 7 using Proposition 4.1. It also turns out that we are
unable to rule out solutions with p = 7 using Lemma 7.1. So we use the method
outlined above to eliminate p = 7. Let l = 71; we find that

Φ71 =
{
19, 30, 65

}
⊂ F71,

and so l = 71 satisfies the conditions of Proposition 8.1. Hence

17ux7 ≡ 20 (mod 71), 11vy7 ≡ 19 (mod 71) or

17ux7 ≡ 31 (mod 71), 11vy7 ≡ 30 (mod 71) or

17ux7 ≡ 66 (mod 71), 11vy7 ≡ 65 (mod 71).
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Note that 7 is a primitive root of F71. Applying the map L71,7,7 to the above we
get

0 ≡ 5 (mod 7), 3v ≡ 2 (mod 7) or

0 ≡ 4 (mod 7), 3v ≡ 4 (mod 7) or

0 ≡ 0 (mod 7), 3v ≡ 4 (mod 7).

Here we are helped with the fact that 17 is a 7-th power modulo 71 and so
L71,7,7(17) = 0. The first two possibilities above are impossible. Hence v ≡ 6
(mod 7). Now we take l = 127. Then

Φ127 =
{
13, 27, 41, 54, 80, 95, 100, 107

}
⊂ F127.

Thus 11vy17 ≡ φ (mod 127) for some φ ∈ Φ127. This implies that v ≡ 0, 1, 2, 5
(mod 7), contradicting the fact that v ≡ 6 (mod 7) proved above. Hence there is
no solution for p = 7, or indeed for any larger prime exponent.

Remark. With regard to Example 4, the referee remarks to us that equations of
the form

Axp −Byp = 1
with AB odd are most easily dealt with using the ‘H-family’ of Frey curves. To see
this, suppose HΨ ∼p h for some newform h. Clearly 2 | xy and it follows that HΨ

has nodal reduction at 2. By Lemma 2.1

p | NormK/Q(c22 − 32),

where c2 is the coefficient of q2 in the q-expansion of h, and K is the field of
definition of the coefficients of f . The point is that this expression cannot be zero,
since any conjugate c of c2 satisfies |c| ≤ 2

√
2 < 3. Thus this approach will always

yield a bound for p.
However, for Example 4, this does not help in eliminating the troublesome p = 7

case. To see this note that for Example 4, we have HΨ ∼p h where h has level
3i × 11 × 17 and i = 1, 2 or 3. Now at level 3 × 11 × 17 = 561 we have—among
many others—the newform

h = q +
√

2q2 + q3 + (−
√

2− 2)q5 +
√

2q6 − 3q7 · · · .

We see that p divides Norm(
√

2
2 − 32) = 49, and so we have not eliminated p = 7.

9. Proof of Theorem 2

We programmed the methods outlined so far in MAGMA. These are powerful enough
to prove Theorems 1–3 apart from a few cases.

Proof of Theorem 2. Our programs prove Theorem 2 completely. First we solve
the relevant Thue equations (2) with exponents n = 3, 4, 5 using inbuilt MAGMA
functions. Hence we can reduce to the equation

qu1x
p − qv2y

p = 1, xy 6= 0, 0 ≤ u, v < p, p ≥ 7 is prime.

We apply Proposition 3.2, but at first ignore the information for the H-family. We
consider separately the three cases

• u = 0, v > 0; solutions here correspond to a pair of newforms of level 2q2.
• u > 0, v = 0; solutions here correspond to a pair of newforms of level 2q1.
• u, v > 0; solutions here correspond to a pair of newforms of level 2q1q2.
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Suppose first that (q1, q2) 6= (19, 3). For each possible pair of newforms we were able
to bound the exponent p using Proposition 4.1. Indeed, for most pairs of newforms
encountered, Proposition 4.1 completely eliminated all possible exponents p ≥ 7.
In all the other cases the remaining exponents were eliminated using Lemma 7.1 or
Proposition 8.1.

The reason for supposing that (q1, q2) 6= (19, 3) is that Proposition 4.1 failed
to bound the exponent p for this case using just the F and G-information. Here
we were forced to apply the full information given by Proposition 3.2 and then
Proposition 4.1 eliminated all the exponents p ≥ 7. This completes the proof. �

10. Substantial Subcases of Theorems 1, 3

Unfortunately we cannot completely prove Theorems 1, 3 using the methods
explained so far. The reason is that Proposition 4.1 works by bounding the expo-
nent. Occasionally the equation considered has solutions for all possible exponents,
and Proposition 4.1 will fail to bound the exponent. However applying our MAGMA
programs used above to prove Theorem 2 yields partial results in the directions of
Theorems 1, 3. In this section we continue to use Cremona’s code for elliptic curves
as in either his book [12], or his extended online tables [13].

Proposition 10.1. Suppose p, q are primes with p ≥ 7 and 3 ≤ q < 100. Then
the equation

(23) quxp − 2ryp = 1, x, y non-zero integers, 0 ≤ u, r < p,

has no solutions unless
(a) (u, r, x, y) = (0, 1,−1,−1) and p is arbitrary.
(b) q = 3 and (u, r, x, y) = (1, 1, 1, 1), (1, 2,−1,−1), (2, 3, 1, 1) and p is arbi-

trary.
(c) q = 5, r = 2 and the solution arises from the pair (40A1, 20A1) via

(F 1
Ψ, G

2
Ψ).

(d) q = 7, r = 3 and the solution arises from the pair (56A1, 224A1) via
(F 1

Ψ, G
2
Ψ).

(e) q = 17, r = 4 and the solution arises from the pair (17A1, 136A1) via
(F 1

Ψ, G
2
Ψ).

(f) q = 31, r = 5 and the solution arises from the pair (62A1, 248B1) via
(F 1

Ψ, G
2
Ψ).

Remark. Notice that in cases (c)-(f) we have not yet solved the equation (23)
completely. A complete solution will essentially be the proof of Theorem 1.

Proof. Suppose first the u = 0. Then the equation is a special case of the equation
xp + 2ryp + zp = 0 which has been solved by Wiles [33] for r = 0, Ribet [26] for
r > 1 and Darmon and Merel [14] for r = 1. The only solution to this equation
is r = 1 and (x, y, z) = ±(1,−1, 1). This gives (a). From now on we suppose that
u > 0.

The cases with q = 5, 3, 13 are handled in Examples 1, 2, 3 respectively. The
other cases are similar to these, except that Lemma 7.1 and Proposition 8.1 are
occasionally needed to eliminate some possibilities. �

Proposition 10.2. Suppose p is a prime with p ≥ 7. Then the equation

(24) 5uxp − 2r3syp = 1, x, y non-zero integers, u, s > 0,
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has no solutions unless
(a) (r, s) = (4, 1) and the solution arises from the triple (15A1, 120B1, 810F1)

via (F 1
Ψ, G

2
Ψ,H

1
Ψ).

(b) (r, s) = (3, 1) and the solution arises from the triple (120A1, 480C1, 810F1)
via (F 1

Ψ, G
2
Ψ,H

1
Ψ).

(c) (r, s) = (1, 1) and the solution arises from the triple (480B1, 1920R1, 810E1)
or the triple (480G1, 1920M1, 810A1) via (F 2

Ψ, G
4
Ψ,H

1
Ψ).

(d) (r, s) = (1, 2) and the solution arises from the triple (480F1, 1920Q1, 270A1)
or the triple (480H1, 1920A1, 270C1) via (F 2

Ψ, G
4
Ψ,H

1
Ψ).

Proof. The proof uses Proposition 3.2 and Proposition 4.1. For the proof we
used the full F -, G- and H-information given by Proposition 4.1. The F - and
G-information allows us to predict the exponent r, whilst the H-information al-
lows us to predict the exponent s. This is very similar to Example 2 and we
omit the details except for one comment: we are not surprised to find the pairs
(r, s) = (3, 1) and (r, s) = (1, 1) since these correspond respectively to the solutions
(p, u, r, s, x, y) = (p, 2, 3, 1, 1, 1) and (p, u, r, s, x, y) = (p, 1, 1, 1,−1,−1). We are
however surprised at first sight to find the pairs (r, s) = (4, 1) and (r, s) = (1, 2),
since the corresponding equations

5uxp − 48yp = 1, 5uxp − 18yp = 1

appear not to have solutions. Notice however that the equations

15xp − 16yp = 1, 10xp − 9yp = 1

do have obvious solutions, and these equations have the same powers of 2 and 3
appearing in the coefficients as in the previous equations. It is a limitation of the
method of Proposition 4.1 that it does not distinguish between these two pairs of
equations. �

Similarly we have the following result which also follows from Propositions 3.2
and 4.1

Proposition 10.3. Suppose p is a prime with p ≥ 7. Then the equation

(25) 7uxp − 2r3syp = 1, x, y non-zero integers, u, s > 0,

has no solutions unless
(a) (r, s) = (6, 2) and the solution arises from the triple (42A1, 21A1, 378E1)

via (F 1
Ψ, G

1
Ψ,H

1
Ψ).

(b) (r, s) = (4, 1) and the solution arises from the triple (21A1, 168A1, 1134F1)
via (F 1

Ψ, G
2
Ψ,H

1
Ψ).

(c) (r, s) = (1, 1) and the solution arises from the triple (672E1, 2688C1, 1134H1)
or the triple (672F1, 2688T1, 1134D1) via (F 2

Ψ, G
4
Ψ,H

1
Ψ).

11. Predicting Exponents of Constants II

In Proposition 10.1 we reduced equation (23) with 3 ≤ q < 100 prime to a few
cases where the exponent r is known. In other words, we reduced to an equation
of the form

(26) A′Auxp −Byp = 1, x, y, u are non-zero integers, 0 < u < p,

where A′, A, B are non-zero integers, with A ≥ 5. We now give a result which
enables us to predict the exponent u and complete the resolution of such equations
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using Bennett’s Theorem (Theorem 4). The method here is motivated to some
extent by [9, Lemma 7.4].

If l is a prime n a positive integer, we write

(27) µn(Fl) = {ζ ∈ F∗l : ζn = 1} .

Proposition 11.1. Let p ≥ 7 be a (fixed) prime. Suppose A′, A, B, u0 are non-zero
integers, with B even, A ≥ 5 and 0 < u0 < p. Suppose moreover that

A′Au0 −B = 1.

Suppose that the solution (u, x, y) to equation (26) arises from a pair of elliptic
curves (F,G) via the Frey pair (FΨ, GΨ) where FΨ, GΨ belong respectively to the
F - and G-families. Suppose further that there is a positive integer n satisfying the
following conditions:

(i) The integer l = np+ 1 is prime,
(ii) l - 2A′AB,
(iii) An 6≡ 1 (mod l),
(iv) p - (l + 1± al(F )) or p - (l + 1± al(G)),
(v) for all ζ ∈ µn(Fl)\

{
1
}

with Bζ 6≡ −1 (mod l),

al(FBζ) 6≡ al(F ) (mod p) or al(GBζ) 6≡ al(G) (mod p).

Then (x, y, u) = (1, 1, u0). Moreover, if F , G have non-trivial 2-torsion and l <
p2/4 then we still obtain the same conclusion when we replace condition (v) by the
following weaker condition:

(v′) for all ζ ∈ µn(Fl)\ {1} with Bζ 6≡ −1 (mod l),

al(FBζ) 6= al(F ) or al(GBζ) 6= al(G).

Proof. We assume that (i)–(v) hold. Let ψ = Byp. If Byp = 0, −2 then A′Auxp =
±1 contradicting the fact that A ≥ 5 and u > 0. Thus ψ = Byp 6= 0, −2.

By definition, since (u, x, y) arises from (F,G) via (FΨ, GΨ) we see that Fψ ∼p F
andGΨ ∼p G. Clearly l 6= 2 and so, by Lemma 3.1, is a prime of moderate reduction
for FΨ, GΨ. Moreover from assumption (iv) and Lemma 2.1 we see that l is a prime
of good reduction for the curves Fψ, Gψ. But the discriminants of Fψ, Gψ are of
the form ±2α(A′Axp)β(Byp)γ where β, γ > 0. Therefore l - x, y. Again by Lemma
2.1

al(Fψ) ≡ al(F ) (mod p) and al(Gψ) ≡ al(G) (mod p).
But yp ∈ µn(Fl) and so ψ ≡ Bζ for some ζ ∈ µn(Fl). By condition (v) we deduce
that either yp ≡ 1 (mod l) or Byp ≡ −1 (mod l). The latter is impossible since it
implies that l | A′Axp, and hence the former congruence must hold. Thus

A′Auxp = Byp + 1 ≡ B + 1 ≡ A′Au0 (mod l).

Since xnp = xl−1 ≡ 1 (mod p), we see that An(u−u0) ≡ 1 (mod l). However by (iii)
we know that An 6≡ 1 (mod l). Since l − 1 = np we deduce that p | (u− u0). But
0 < u0, u < p. Thus u = u0. We have therefore reduced to the equation

A′Au0xp −Byp = 1,

which now has fixed coefficients. By the hypotheses of the proposition, this has a
solution (x, y) = (1, 1). It follows from Bennett’s Theorem (Theorem 4) that there
can be no other solution. This completes the proof provided (i)–(v) hold.

The last part of the Proposition follows easily from Lemma 11.2 below. �
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Lemma 11.2. Suppose E and E′ are two elliptic curves with non-trivial 2-torsion.
Suppose p is an odd prime, and l an odd prime of good reduction for the two curves
that satisfies l < p2/4. Then al(E) ≡ al(E′) (mod p) if and only if al(E) = al(E′).

Proof. The ‘if’ direction is obvious; let us proof the ‘only if’ direction. So suppose
that al(E) ≡ al(E′) (mod p). Since E and E′ have non-trivial 2-torsion we see that
al(E) = 2b and al(E′) = 2b′ for some integers b, b′. Thus b ≡ b′ (mod p) and the
Hasse–Weil bounds imply that |b|, |b′| <

√
l. Now the assumption l < p2/4 forces

|b− b′| < p and hence b = b′. The Lemma follows. �

12. Proof of Theorem 1

We now complete the proof of Theorem 1.

Proof of Theorem 1. As in the proof of Theorem 2 we quickly reduce to the case
where the exponent is a prime p ≥ 7. We now apply Proposition 10.1. We see that
we only have to resolve cases (c)–(f) of that Proposition. Indeed we have reduced
to equations of the form

(28) quxp −Byp = 1

where (q,B) = (5, 4), (7, 8), (17, 16), (31, 32). For pair (q,B) we would like to show
that the solution satisfying |x|= |y| is unique. If however |x|, |y| > 1, then the
method of [24] gives an upper bound for the exponent p in (28). The bounds for
the exponent p are given in Table 6.

Table 6. Bounds on p in equation (28), assuming that |x|, |y|> 1

(q,B) bound on p (q,B) bound on p
(5, 4) 48, 679, 097 (7, 8) 61, 063, 061
(17, 16) 102, 981, 207 (31, 32) 131, 256, 424

We refer to [24] for the statement of the theoretical result we have applied. We
only explain a small trick we used to obtain better bounds for p, when (q,B) = (7, 8)
or (31, 32). To deal with (28), we introduce the linear form in three logarithms:

Λ = logB − u log q + p log(y/x),

where 0 ≤ u < p. If u > p/2, then put u0 = u − p, and otherwise set u0 = u. We
thus have

Λ = logB − u0 log q + p log
(
y/(qx)

)
or

Λ = logB − u0 log q + p log(y/x).
Let t be the integer such that qt ≤ B < qt+1 and write

Λ = log(Bq−t)− (u0 − t) log q + p log(yq−ε/x),

where ε = 0 or 1. We then apply the theoretical result from [24] to the latter linear
form in three logarithms. Our gain comes from the fact that Bq−t has the same
height as B, but is much closer to 1 (when t is positive).

We will explain how (q,B) = (5, 4) is treated, the other cases are similar. Here
we know from Proposition 10.1 that r = 2 and that the solution arises from the
pair (40A1, 20A1) via the Frey pair (F 1

Ψ, G
2
Ψ). We also know that u > 0 from the
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proof of Proposition 10.1. We note in passing that both curves 20A1 and 40A1
have non-trivial 2-torsion.

We now apply Proposition 11.1 with A′ = 1, A = 5, B = 4, u0 = 1, EΨ = F 1
Ψ

and E = 40A1. We wrote a PARI/GP [1] program which for each 7 ≤ p ≤ 2 × 108

searches for a corresponding l satisfying conditions (i)–(iv), (v′) of Proposition 11.1.
Our program succeeded in finding such an l for all p in the given range. The entire
computation took about 25 hours on a dual processor AMD-Athlon MP 2200+ with
clock speed 1800 MHz. Now Proposition 11.1 shows that (u, x, y) = (1, 1, 1) is the
unique solution for 7 ≤ p ≤ 2× 108. In view of the bound on p above, we see that
our proof is complete for the case (q,B) = (5, 4).

The proofs for the three other cases are similar; again we proved the uniqueness
of the known solution for exponents 7 ≤ p ≤ 2 × 108 which in view of the above
bounds is more than sufficient. The entire computer time for this proof (on the
above mentioned machine) is about 100 hours. �

13. Eliminating Extraneous Triples

We are almost ready to prove Theorem 3, which we would like to deduce from
Propositions 10.2 and 10.3. We can deal with cases (b), (c) of Proposition 10.2,
and cases (b), (c) of Proposition 10.3 using Proposition 11.1. However, the cases
(a), (d) of Proposition 10.2 and (a) of Proposition 10.3 appear extraneous; they do
not seem to correspond to a solution. We would like to eliminate these cases. This
we do using the following variant of Proposition 11.1.

Proposition 13.1. Let p ≥ 7 be a (fixed) prime. Suppose A′, A, B are non-zero
integers, with B even, A ≥ 5. Let (F,G) be a pair of elliptic curves and FΨ, GΨ

belong respectively to the F - and G-families. Suppose further that there is a positive
integer n satisfying the following conditions:

(i) The integer l = np+ 1 is prime,
(ii) l - 2A′AB,
(iii) An 6≡ 1 (mod l),
(iv) p - (l + 1± al(F )) or p - (l + 1± al(G)),
(v) for all ζ ∈ µn(Fl) with Bζ 6≡ −1 (mod l),

al(FBζ) 6≡ al(F ) (mod p) or al(GBζ) 6≡ al(G) (mod p).

Then equation (26) does not have any solution arising from the pair (F,G) via
(FΨ, GΨ). Moreover, if F , G have non-trivial 2-torsion and l < p2/4 then we still
obtain the same conclusion when we replace condition (v) by the following weaker
condition:

(v′) for all ζ ∈ µn(Fl) with Bζ 6≡ −1 (mod l),

al(FBζ) 6= al(F ) or al(GBζ) 6= al(G).

The proof of the above Proposition is similar to, but simpler than, the proof of
Proposition 11.1.

14. Proof of Theorem 3

We now complete the proof of Theorem 3.

Proof of Theorem 3. As in the proof of Theorem 2 we quickly reduce to the case
where the exponent is a prime p ≥ 7. We now apply Propositions 10.2 and 10.3.
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Thus we have a handful of equations of the form (28) where (q,B) = (5, 48), (5, 24),
(5, 6), (5, 18), (7, 576), (7, 48), (7, 6). Again, as in the proof of Theorem 1, assuming
that |x|, |y| > 1, the method of [24] gives an upper bound for the exponent p in
(23). The bounds for the exponent p are given in Table 7.

Table 7. Bounds on p in equation (28), assuming that |x|, |y|> 1

(q,B) (5, 48) (5, 24) (5, 6) (5, 18)
bound on p 118, 978, 987 167, 798, 750 45, 729, 979 142, 006, 412

(q,B) (7, 576) (7, 48) (7, 6)
bound on p 215, 027, 236 261, 178, 348 200, 609, 141

For the cases (q,B) = (5, 24), (5, 6), (7, 48), (7, 6), and for p in the range 7 ≤
p ≤ 2× 108 when q = 5 and 7 ≤ p ≤ 3× 108 for q = 7, we showed that the obvious
solutions are the unique ones using the pari/gp program based on Proposition 11.1.
For the other extraneous cases, we used a program based on Proposition 13.1,
which proved for p in the above ranges that there are no solutions. The entire
computations took around 310 hours on a dual processor AMD - Athlon MP 2200+
with clock speed of 1800 MHz. �

Remark. Baker’s method for bounding the exponent n for equation (3) involves a
linear form in four logarithms. The best known bounds for linear forms in loga-
rithms [22] will yield a bound for n that is of the order 1020. Notice that using
the modular approach we have predicted the exponents of 2 and 3 appearing in
equation (3). Thus we have reduced to a linear form in three logarithms, and are
able to get a bound of around 108, by using [24]. The computations above would
have been entirely unthinkable if the bound on the exponent is far greater than
1010.

This situation is reminiscent of the proof of the Fibonacci Powers Theorem [9]
(the only perfect powers in the Fibonacci sequence are 0, 1, 8, 144). There, infor-
mation obtained from the modular approach enables one to rewrite a linear form
in three logarithms as a linear form in two logarithms. This leads to a reduction
of the bound on the exponent from 2 × 108 (which in that context is a bound
that is impossibly large), to 733 (which for the computation required is just about
reasonable). This device, we believe, deserves further investigation.
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15. Tables of Solutions

Table 8. Solutions to Equation (1) with 3 ≤ q < 100 and x, y > 0

q (u, r) n (x, y)
q arbitrary (0, 1) n arbitrary (1,1)
3 (1, 1) n arbitrary (1, 1)
3 (1, 2) n arbitrary (1, 1)
3 (2, 3) n arbitrary (1, 1)
3 (2, 0) 3 (1, 2)
5 (1, 2) n arbitrary (1, 1)
5 (1, 0) 4 (2, 3)
7 (1, 3) n arbitrary (1, 1)
7 (1, 0) 3 (1, 2)
17 (1, 4) n arbitrary (1, 1)
17 (1, 0) 3 (7, 18)
17 (1, 1) 3 (1, 2)
17 (1, 0) 4 (1, 2)
19 (1, 0) 3 (3, 8)
31 (1, 5) n arbitrary (1, 1)
31 (1, 2) 3 (1, 2)
31 (1, 1) 4 (1, 2)
31 (1, 0) 5 (1, 2)
37 (1, 0) 3 (3, 10)
43 (1, 0) 3 (2, 7)
53 (1, 1) 3 (1, 3)
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Table 9. Solutions to Equation (2) with 3 ≤ q2 < q1 ≤ 31 primes
and x, y > 0

q1, q2 (u, r) n (x, y)
5 ≤ q1 ≤ 31, q2 = 3 (0, 2) 3 (2, 1)
7 ≤ q1 ≤ 31, q2 = 5 (0, 1) 4 (3, 2)
q1 = 5, q2 = 3 (1, 0) 4 (2, 3)

11 ≤ q1 ≤ 31, q2 = 7 (0, 1) 3 (2, 1)
q1 = 7, q2 = 3, 5 (1, 0) 3 (1, 2)

19 ≤ q1 ≤ 31, q2 = 17 (0, 1) 3 (18, 7)
q1 = 17, 3 ≤ q2 ≤ 13 (1, 0) 3 (7, 18)
19 ≤ q1 ≤ 31, q2 = 17 (0, 1) 4 (2, 1)
q1 = 17, 3 ≤ q2 ≤ 13 (1, 0) 4 (1, 2)
23 ≤ q1 ≤ 31, q2 = 19 (0, 1) 3 (8, 3)
q1 = 19, 3 ≤ q2 ≤ 17 (1, 0) 3 (3, 8)
q1 = 31, 3 ≤ q2 ≤ 29 (1, 0) 5 (1, 2)

q1 = 5, q2 = 3 (2, 1) 3 (1, 2)
q1 = 7, q2 = 3 (2, 1) 4 (1, 2)
q1 = 13, q2 = 5 (1, 1) 3 (8, 11)
q1 = 17, q2 = 3 (2, 2) 5 (1, 2)
q1 = 17, q2 = 5 (1, 1) 3 (2, 3)
q1 = 19, q2 = 11 (1, 1) 3 (5, 6)
q1 = 23, q2 = 3 (1, 1) 3 (1, 2)

Table 10. Solutions to Equation (3) with q = 5, 7 and x, y > 0

q (u, r, s) n (x, y)
5 (1, 1, 1) n arbitrary (1, 1)
5 (2, 3, 1) n arbitrary (1, 1)
7 (1, 1, 1) n arbitrary (1, 1)
7 (2, 4, 1) n arbitrary (1, 1)
7 (2, 1, 1) 3 (1, 2)
7 (1, 1, 3) 4 (5, 3)
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