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ON A SHIMURA CURVE THAT IS A COUNTEREXAMPLE
TO THE HASSE PRINCIPLE

SAMIR SIKSEK and ALEXEI SKOROBOGATOV

Abstract

Let X be the Shimura curve corresponding to the quaternion algebra over � ramified only at 3 and 13.
B. Jordan showed that X�(

√
−13) is a counterexample to the Hasse principle. Using an equation of X

found by A. Kurihara, it is shown here, by elementary means, that X has no �(
√

−13)-rational divisor
classes of odd degree. A corollary of this is the fact that this counterexample is explained by the Manin
obstruction.

1. Introduction

Let k be a number field, and let �k be the ring of adèles of k. Let X be a smooth
and projective variety over k that is a counterexample to the Hasse principle; that
is, X has no k-rational point, but does have rational points in all the completions
of k. Then X(�k) �= �. The global reciprocity applied to the Brauer–Grothendieck
group Br(X) defines a certain subset X(�k)

Br ⊂ X(�k) that contains the diagonal
image of X(k). One says that the failure of the Hasse principle for X is explained
by the Manin obstruction if X(�k)

Br = �.
Now let X be a curve. It is an open question as to whether or not all counter-

examples to the Hasse principle on curves can be accounted for by the Manin
obstruction. (The answer to the same question for surfaces is known to be negative;
see [11, Section 8]). One can easily give a conditional answer if X already has
no rational divisor class of degree 1; then the finiteness of the Tate–Shafarevich
group of the Jacobian of X implies that X(�k)

Br = �; see [11, Corollary 6.2.5].
A few examples of this kind are known: over k = �, we have Schinzel’s curve
x4 + 17y4 − 2(4y2 + z2)2 = 0, Cassels’s curve x4 + y4 − 2412z4 = 0, and a more
complicated curve, found in [2]. These curves have genus 3. When X has a rational
divisor class of degree 1, very little is known. A simplest case when our question
can be answered is when X is equipped with a morphism f : X → A, where A is
an abelian variety such that A(k) is finite. Two typical cases occur when X can be
realised as a subvariety of its Jacobian (using a rational divisor class of degree 1),
or when f is a finite covering of an elliptic curve. In some other cases our problem
can be resolved by descent; see [11, pp. 127–128].

One difficulty for general curves seems to be a ‘lack of structure’, so hopefully the
problem should become more tractable if we restrict ourselves to a class of ‘modular
curves’, say Shimura curves. Motivated by this goal, we study in this paper, by
elementary methods, one particular Shimura curve that is a counterexample to the
Hasse principle.

Let B be the quaternion algebra over � ramified only at 3 and 13, and let
XB/� be the corresponding Shimura curve. Using subtle properties of the Galois
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representation on certain points of finite order of abelian surfaces parametrized by
the points of XB , Bruce Jordan [4] showed that XB(K) = � where K = �(

√
−13). On

the other hand, the question of the existence of local points on Shimura curves has
been completely answered by Shimura, and by Jordan and Livné [5]. In particular,
XB(�K ) �= �. The question that naturally arises is whether this counterexample to
the Hasse principle can be accounted for by the Manin obstruction. We work with
the equation of XB obtained by Akira Kurihara in [8]. Unlike the case of classical
modular curves, the equations of Shimura curves are difficult to obtain. The method
given in [8] is based on a (very plausible) guess, and so, until that guess is proved
correct, our main result should be regarded as concerned not with the Shimura
curve XB itself, but with the curve X of genus 3 given by the equations

X :

{
v2 = −(3u2 + 12u + 13)(u2 + 12u + 39),
z2 = 2u2 + 6u + 5.

(1)

In this paper we prove that:

(1) X has no divisor classes of odd degree over K = �(
√

−13); in particular, it
has no divisor class of degree 1;

(2) the failure of the Hasse principle for XK is explained by the Manin
obstruction.

As we mentioned earlier, the second claim follows from the first one if one assumes
that the Tate–Shafarevich group of the Jacobian of XK is finite. We do not make
this assumption; indeed, our results do not rely on any conjectures.

2. Divisor classes of degree 1

Note that X covers the curve

Y: v2 = −(3u2 + 12u + 13)(u2 + 12u + 39). (2)

We begin by studying the arithmetic of Y . Clearly, Y is a genus 1 curve, and a short
search reveals that Y has a K-point

P0 =

[
−39 + 4

√
−13

7
,
260 − 120

√
−13

49

]
.

It is straighforward to give a birational map from Y to its jacobian elliptic curve

E : y2 = (x − 10)(x + 3)(x + 6),

taking P0 to the point at infinity on E. The map is complicated, however, and we
do not give the equations here. The reader who would like to check this and other
calculations made in this paper should consult [10].

Lemma 2.1. E(K) has rank 1; a �-basis for E(K) is

S1 = [10, 0], S2 = [−3, 0], S3 =

[
−14

13
,

480
√

−13

169

]
.

Proof. Let
E−13 : y2 = (x + 130)(x − 39)(x − 78)

be the −13-twist of E. We find from John Cremona’s program ‘mwrank’ that the rank
of E(�) is 0, and that the 2-division points [10, 0], [−3, 0] form a basis for E(�). The
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same program tells us that [−130, 0], [39, 0], [14, 480] is a basis for E−13(�) (now
of rank 1). Suppose now that S ∈ E(K), and let σ be the non-trivial automorphism
of K . Then S + Sσ is in E(�), and so belongs to the subgroup generated by S1, S2.
Likewise, S − Sσ is in E−13(�), and hence belongs to the subgroup generated by
S1, S2, S3. Hence 2S = (S + Sσ) + (S − Sσ) is also in the subgroup generated by
S1, S2, S3. It is easy to check that S1, S2 and S3 are independent modulo 2E(K).
Hence S1, S2, S3 is a basis. �

Using our birational map, we find that the images of these three points on Y are
the following points:

P1 =

[
−39 − 4

√
−13

7
,

−260 − 120
√

−13

49

]
,

P2 =

[
−39 − 4

√
−13

19
,

−1300 + 120
√

−13

361

]
,

P3 =

[
−11442639 − 2077204

√
−13

3412219
,

−74800945937900 + 46469317632360
√

−13

11643238503961

]
.

Corollary 2.2. The classes [P1 − P0], [P2 − P0], [P3 − P0] form a �-basis for
Pic0(Y ).

Lemma 2.3. Let f ∈ K(Y ) be the function given by f = u2 +12u+39 on the affine
equation for Y in (2). Let v√

−13 : K∗ → � be the valuation corresponding to the prime√
−13 over K . Then

v√
−13(f(P0)) = v√

−13(f(P1)) = v√
−13(f(P2)) = v√

−13(f(P3)) = 1.

Proof. From the definition of f, all that we have to check is that v√
−13(u(Pi)) = 1

for i = 0, . . . , 3. This is immediate for i = 0, 1, 2, and is obtained by a short calculation
for i = 3. �

Lemma 2.4. Suppose that Q ∈ Y (K̄), and let L = K(Q). Suppose that the extension
L/K has odd degree. Then there is a prime P of L such that:

(a) P|
√

−13,
(b) deg(P/

√
−13) is odd, and

(c) P|u(Q).

In particular, if Q ∈ Y (K), then
√

−13|u(Q).

Proof. Let Q1, . . . , Qn be the conjugates of Q (Q1 = Q), and note that n = [L : K].
Thus the divisor

∑
Qi −nP0 is K-rational of degree 0, and Corollary 2.2 implies that

n∑
i=1

Qi − nP0 ∼
3∑

j=1

nj(Pj − P0)

for some integers nj . Taking everything to one side, we find that

n∑
i=1

Qi −
3∑

j=0

mjPj ∼ 0

for some integers mj .
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There thus exists a function g ∈ K(Y ) whose divisor equals the divisor on the
left-hand side:

div(g) =

n∑
i=1

Qi −
3∑

j=0

mjPj,

and we note for future reference that

m0 + m1 + m2 + m3 = n = [L : K] (3)

is odd. It is easy to see that div(f) and div(g) have disjoint support. Weil’s reciprocity
(see, for example, [9, p. 43]) asserts that

f(div(g)) = g(div(f)). (4)

Now f = u2 + 12u + 39 is a factor of the right-hand side of equation (2), and it is
clear that it has double zeros at two ramification points and double poles at the two
points at infinity. Thus div(f) = 2D for some K-rational divisor D. Hence, from (4)
we have (

n∏
i=1

f(Qi)

) (
3∏

j=0

f(Pj)
mj

)−1

= g(D)2 ∈ K∗2
.

The previous lemma asserts that the f(Pj) all have valuation 1 at
√

−13, and from
the fact that (3) is odd, we find that

v√
−13

(
n∏

i=1

f(Qi)

)

is odd. Now
∏n

i=1 f(Qi) = NormL/K (u(Q)2 + 12u(Q) + 39). Let P1, . . . ,Ps be the

distinct prime ideals of L dividing
√

−13. We can write

(u(Q)2 + 12u(Q) + 39) =
(∏

P
rj
j

)
a

for some fractional ideal a not having any of the Pj in its support. Taking norms,
we deduce that∑

rjdeg
(
Pj/

√
−13

)
= v√

−13NormL/K

(
u(Q)2 + 12u(Q) + 39

)
;

we know that the right-hand side is odd and hence, for some j, both
rj and deg(Pj/

√
−13) are odd. Thus there is a prime P|

√
−13 such that

deg(P/
√

−13) is odd and vP(u(Q)2 + 12u(Q) + 39) is odd. We see that vP(u(Q)) � 0,
otherwise the valuation would have been even. Further, from equation (2) we
see that vP(3u(Q)2 + 12u(Q) + 13) is also odd. Hence P|(u(Q)2 + 12u(Q)) and
P|(3u(Q)2 + 12u(Q)), and thus P|u(Q). �

Theorem 2.5. X has no K-rational divisor classes of odd degree.

Proof. Let K̄ be an algebraic closure of K . Since X has points everywhere locally
we have an equality

H0(Gal(K̄/K),Pic(X̄)) = Pic(X),

and so it is sufficient to show that there are no K-rational divisors of odd degree or,
equivalently, that there are no points defined over extensions of K of odd degree.
Thus we suppose that R is a point on X such that K(R)/K is of odd degree, and
we seek to derive a contradiction. Let Q be the image of R on Y . Clearly, the point
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Q lies on the affine patch given by equation (2). Since the v- and z-coordinates of R
are given by quadratic equations over the u-coordinate and the extension K(R)/K
is odd, it follows that

K(u(Q)) = K(Q) = K(R).

Let L = K(Q) = K(R). Hence L/K has odd degree. By the previous lemma, we know
that there exists a prime ideal P of L such that P|

√
−13, P|u(Q), and deg(P/

√
−13)

is odd. But u(Q) = u(R). Thus P|u(R). From the second equation in (1), we have

z(R)2 ≡ 5 (mod P),

and hence 5 is a square in the field OL/P. The crucial point now is that[
OL/P : OK/

(√
−13

)]
= deg

(
P/

√
−13

)
,

which is odd. Taking norms, we find that 5deg(P/
√

−13) is a square in OK/(
√

−13).
This is a contradiction, since OK/(

√
−13) = �/13, 5 is a quadratic non-residue

modulo 13, and deg(P/
√

−13) is odd. Hence there are no divisor classes of odd
degree over K . �

3. The Manin obstruction on X

We come now to proving that the Manin obstruction explains the failure of the
Hasse principle for XK . For this, it would be enough to know the finiteness of the
Tate–Shafarevich group of the Jacobian of XK . However, using the computations
of the previous section, we deduce the desired statement from a simpler fact:
the finiteness of X(EK ), the Tate–Shafarevich group of the Jacobian of YK . The
finiteness of this group follows from the result of Kolyvagin, which says that a
modular elliptic curve over � with analytic rank at most 1 has a finite Tate–
Shafarevich group [6, 7]. All elliptic curves over � are modular by a theorem of
C. Breil, et al. [1].

Lemma 3.1. The group X(EK ) is finite.

Proof. We make use of John Cremona’s tables, to be found at [3]. Specifically,
we require the files allbsd.1-8000 and allbsd.8001-12000. The curves E/� and
E−13/� (the curves 39A1 and 8112HH2, respectively, in these tables) have analytic
ranks 0 and 1 according to the tables.

By Kolyvagin, it follows that X(E) and X(E−13) are finite. Let us show that this
implies the finiteness of X(EK ). Let A = RK/�(EK ) be the abelian surface over �
which is the Weil descent of EK . We then have

H1(�, A) = H1(K,EK ) and H1(�v, A) =
∏
w|v

H1(Kw, EK ).

The functoriality of restriction maps implies that we have a natural isomorphism
X(A) = X(EK ). Let �̄ be an algebraic closure of �, let Ē = E ×� �̄, and let
Ā = A ×� �̄. By the definition of Weil descent, Ā is isomorphic to Ē × Ē. Using
explicit action of the Galois group Gal(�̄/�), one easily checks that the map of
�̄-varieties Ē × Ē → Ē × Ē given by (x, y) 	→ (x + y, x − y) descends to a map of
�-varieties A → E × E−13. This map is an isogeny of degree 4. The property of the
Tate–Shafarevich group to be finite is preserved by isogenies. Hence the finiteness
of X(A) = X(EK ) follows from the finiteness of X(E × E−13). �
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Lemma 3.2. If (Qv)v ∈ Y (�K)Br, then u is regular at Q√
−13 and

√
−13|u(Q√

−13)

(where Q√
−13 is the

√
−13-adic component of the adelic point).

Proof. We can regard YK as an elliptic curve. By Lemma 3.1, its Tate–Shafarevich
group is finite. It is well known that Y (�K )Br is generated by the closure of the
diagonal image of Y (K) and the connected component of 0 (see, for example, [11,
Proposition 6.2.4]). Then Q√

−13 is in the
√

−13-adic closure of Y (K). However, by
Lemma 2.4,

Y (K) ⊆
{
Q ∈ Y (K√

−13) : u is regular at Q and
√

−13|u(Q)
}

and we know that the set on the right-hand side is closed. Thus Q√
−13 belongs to

that set. �

Theorem 3.3. The set X(�K )Br is empty.

Proof. Let φ : X → Y be the obvious map. Suppose that (Rv)v ∈ X(�K )Br. By
the functoriality of the Brauer group (see [11, (5.3)]) we have φ((Rv)v) ∈ Y (�K )Br.
Thus u is regular at R√

−13, and
√

−13|u(R√
−13) by the previous lemma. However,

from the second equation for X, we have

z(R√
−13)

2 ≡ 5 (mod
√

−13),

and this is impossible. �

References

1. C. Breuil, B. Conrad, F. Diamond and R. Taylor, ‘On the modularity of elliptic curves over �:
Wild 3-adic exercises’, J. Amer. Math. Soc. 14 (2001) 843–939.

2. J. W. S. Cassels, ‘The arithmetic of certain quartic curves’, Proc. Royal Soc. Edinburgh 100A (1985)
201–218.

3. J. E. Cremona, ‘Elliptic curve data’,
http://www.maths.nottingham.ac.uk/personal/jec/ftp/data/INDEX.html.

4. B. W. Jordan, ‘Points on Shimura curves rational over number fields’, J. Reine Angew. Math. 371
(1986) 92–114.
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