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Abstract. If n is a positive integer, write Fn for the nth Fibonacci number,

and ω(n) for the number of distinct prime divisors of n. We give a description

of Fibonacci numbers satisfying ω(Fn) ≤ 2. Moreover, we prove that the

inequality ω(Fn) ≥ (log n)log 2+o(1) holds for almost all n. We conjecture that
ω(Fn) � log n for composite n, and give a heuristic argument in support of

this conjecture.

1. Introduction

Let Fn be the nth Fibonacci number and Ln be the nth Lucas number. In a
previous paper [3], the following result was proved.

Theorem 1. The only solutions to the equation

Fn = ym, m ≥ 2

are given by n = 0, 1, 2, 6 and 12 which correspond respectively to Fn = 0, 1, 1, 8
and 144. Moreover, the only solutions to the equation

Ln = yp, m ≥ 2

are given by n = 1 and 3 which correspond respectively to Ln = 1 and 4.

The proof involves an intricate combination of Baker’s method and the modular
method; it also needs about one week of computer verification using the systems
pari [1] and magma [2]. In this paper we use the above theorem, together with well-
known results of Carmichael and Cohn to give a description of Fibonacci numbers
with at most two distinct prime divisors.

If n is a positive integer, write ω(n) for the number of distinct prime divisors
of n. We prove that the inequality ω(Fn) ≥ (log n)log 2+o(1) holds for almost all n.
We conjecture that ω(Fn) � log n for composite n, and give a heuristic argument
in support of this conjecture.

2. The Theorems of Carmichael and Cohn

We need the following two celebrated results on Fibonacci numbers. The first is
due to Carmichael [4] and the second to Cohn [5].

Theorem 2. Let n > 2 and n 6= 6, 12 then Fn has a prime divisor which does not
divide any Fm for 0 < m < n; such a prime is called a primitive divisor of Fn.
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Theorem 3. Let 0 < m < n and suppose that the product FmFn is a square, then
(m,n) = (1, 2), (1, 12), (2, 12) or (3, 6).

3. Fibonacci numbers with ω(Fn) ≤ 2

Write ω(m) for the number of distinct prime factors of m. Notice that ω(Fn) > 0
for n > 2 and that for integers m and n, with 1 < m < n and mn 6= 6, 12, we have

(1) ω(Fmn) > ω(Fm) + ω(Fn), if (m,n) = 1,

because first Fm and Fn both divide Fmn and are coprime when the indices are
coprime, and secondly Theorem 2 implies that there is a prime number dividing
Fmn which does not divide the product FmFn.

Lemma 3.1. Suppose n is a positive integer and and ω(Fn) ≤ 2. Then either
n = 1, 2, 4, 8, 12 or n = `, 2`, `2 for some odd prime number `.

Proof. The Lemma follows straightforwardly from the fact that ω(Fn) ≥ 3 in the
following cases:

(a) if 16 | n, or 24 | n, or
(b) if pq | n where p, q are distinct odd primes, or
(c) if `3 | n or 2`2 | n or 4` | n for some odd prime `, unless n = 12.

These may be verified using a combination of Theorem 2 and inequality (1). For
example, if 4` | n where ` 6= 3 is an odd prime then

ω(Fn) ≥ ω(F4`) > ω(F2`) > ω(F`) ≥ 1,

where the strict inequalities follow from Theorem 2. Thus ω(Fn) ≥ 3. �

If n = 2` with ` > 3 then Fn = F`L` and ω(Fn) = 2 implies that F` and L` are
prime numbers (because of Theorem 1).

Consider now the case n = `2 with ω(Fn) = 2. Then ω(F`) = 1 and, by
Theorem 1, F` = p = prime. If ` = 5 then F` = 5 and F25 = 52 × 3001. If ` 6= 5
then p does not divide Fn/F` so that Fn = pqt, say. By Theorem 3, the product
F`Fn = p2qt is not a square, thus t is odd.

We have proved the following result.

Theorem 4. The only solutions to the equation

ω(Fn) = 1

are given by n = 4, n = 6 or n is an odd prime number for which Fn is prime.
The only solutions to the equation

ω(Fn) = 2

are given for even n by n = 8 or n = 12 or n = 2` where ` is some odd prime
number for which Fn = F`L` where F` and L` are both prime numbers. For odd n,
the only possible cases are n = ` or n = `2. Moreover if ω(Fn) = 2 and n = `2 then
F` must be prime, say F` = p; and if ` 6= 5, then

Fn = pqt

where q is a prime number distinct from p, and the exponent t is odd.

A short computer search reveals examples of all of the above possibilities. Thus
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• examples of ω(Fn) = 1 with n prime are: F5 = 5, F7 = 13, F11 = 89,
F13 = 233, . . .

• examples of ω(Fn) = 2 with n = 2` are: F10 = 55, F14 = 13 × 29, F22 =
89× 199, F26 = 233× 521, . . .

• examples of ω(Fn) = 2 with n = `, `2 are: F9 = 34, F19 = 37 × 113, F25,
F31 = 557× 2417, . . . , F121 = 89× 97415813466381445596089, . . .

Remark. Lemma 3.1 can also be proved using some results from [7]. For example,
one of the results from [7] is that, if τ(m) denotes the number of divisors of the
positive integer m, then we have τ(Fn) ≥ Fτ(n) for any positive integer n, with
equality only for n = 1, 2, 4. Assuming that ω(Fn) ≤ 2, one gets immediately that
(up to a few exceptions) τ(n) ≤ 4, giving that n is the product of two distinct
prime numbers or the square of a prime number, which together with Theorem 2
yields the conclusion of Lemma 3.1.

4. Fibonacci numbers rarely have few prime factors

Theorem 4 in effect tells us that ω(Fn) ≥ 3 for almost all n. We mean by this
that the set of integers for which this inequality holds has density 1. Indeed, much
more is true. For example, by the following theorem, ω(Fn) ≥ C holds for almost
all n, whatever the value of C.

Theorem 5. The inequality ω(Fn) ≥ (log n)log 2+o(1) holds for almost all n.

Proof. By Theorem 2, we know that if a divisor d of n is not 1, 2, 6 or 12 then Fd

has a primitive prime factor. This translates immediately in saying that

ω(Fn) ≥ τ(n)− 4,

where τ(n) is the total number of divisors of n. Certainly, τ(n) ≥ 2ω(n). Since
ω(n) = (1 + o(1)) log log n for almost all n, the desired inequality follows. �

5. Heuristic results

Given the present state of knowledge in analytic number theory, it seems unreal-
istic to obtain precise results as to whether each of the possibilities from Theorem 4
occurs finitely many times or infinitely often. There is, however, a standard heuris-
tic argument which suggests that there are infinitely many primes ` with F` prime,
but only finitely many primes ` with ω(F2`) = 2 or ω(F`2) = 2.

The heuristic argument goes as follows (compare with [6, page 15]): from the
Prime Number Theorem, the ‘probability’ that a positive integer m is prime is
1/ log m. Thus the ‘expected number’ of primes ` such that F` is also prime is∑

` is prime

1
log F`

≥ A
∑

` is prime

1
`

for some positive constant A. Since this last series diverges (albeit very slowly), it
is reasonable to guess that there are infinitely prime F`.

Applying the same heuristic argument suggests that there are only finitely many
primes ` with ω(F2`) = 2 or ω(F`2) = 2. For example, the ‘expected number’ of
primes ` with ω(F2`) = 2 is∑

` is prime

1
log F` × log L`

≤ B
∑

` is prime

1
`2

< ∞
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where B is some positive constant.
In fact we can go even further. We conjecture the following.

Conjecture 5.1. ω(Fn) � log n holds for all composite positive integers n.

In order to ‘justify’ this conjecture, let us make the following heuristic principle.

Heuristic 5.2. Let k : N → N be any function. Let A be a subset of positive
integers such that there is no algebraic reason for a ∈ A to have more than k(a)
prime factors. Assume that for every a ∈ A there exists a proper divisor of a, let
us call it ã > 1, such that the greatest common divisor of ã and a/ã has at most
one prime factor and the series∑

a∈A

∑
k1+k2≤k(a)+1

1
(k1 − 1)!

1
(k2 − 1)!

(log log ã)k1−1(log log(a/ã))k2−1

log ã× log(a/ã)

is convergent. Then ω(a) ≤ k(a) should hold only for finitely many a ∈ A.

Heuristic 5.2, is based on the fact that the ‘probability’ for a positive integer n
to have k distinct prime factors is

1
(k − 1)!

(log log n)k−1

log n
.

So, if a ∈ A and ω(a) = k ≤ k(a), then there exist nonnegative integers k1 and k2

such that ω(ã) = k1 and ω(a/ã) = k2. Furthermore, since the greatest common
divisor of ã and a/ã has at most one prime factor, it follows that either k1 + k2 =
k ≤ k(a) or k1 + k2 = k + 1 ≤ k(a) + 1. Thus, the above sum represents just
the sum of the ‘probabilities’ that ω(ã) = k1 and ω(a/ã) = k2 assuming that such
events are independent.

5.1. Conjecture 5.1 follows from Heuristic 5.2. Let n be a composite integer.
Observe first that, by Theorem 2, if a divisor d of n is different from 1, 2, 6 or
12, then Fd has a prime factor not dividing Fd1 for any positive integer d1 < d.
Consequently, if n has at least 0.3 log n divisors, then we have

(2) ω(Fn) ≥ max{1, 0.3 log n− 6} � log n.

Let A be the set of Fibonacci numbers Fn, where n runs through the composite
integers having less than 0.3 log n divisors. Let n be composite and write m for the
largest proper divisor of n. Clearly, m = n/p(n), where p(n) is the smallest prime
factor of n. Note that m ≥ n1/2. It is known that gcd(Fm, Fn/Fm)|p(n), therefore
the two numbers Fm and Fn/Fm share at most one prime factor. Fix k and let k1

and k2 be such that k1 + k2 = k. One checks immediately that both inequalities
Fm < em and Fn/Fm < en−m hold. Thus, we get∑

k1+k2=k

1
(k1 − 1)!(k2 − 1)!

(log log Fm)k1−1 (log log(Fn/Fm))k2−1

≤ 1
(k − 2)!

∑
k1+k2=k

(
k − 2
k1 − 1

)
(log m)k1−1 (log(n−m))k2−1

=
1

(k − 2)!
(log m + log(n−m))k−2

<

(
2e log n

k − 2

)k−2

,
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where for the last inequality above we used Stirling’s formula. Using the inequalities
log Fm � m ≥ n1/2 and log(Fn/Fm) � (n − m) � n (because m divides n), it
follows that∑

k1+k2=k

(log log Fm)k1−1 (log log(Fn/Fm))k2−1

(k1 − 1)!(k2 − 1)! log Fm × log(Fn/Fm)
� 1

n3/2

(
2e log n

k − 2

)k−2

.

For a fixed y, the function x 7−→ (2ey/x)x is increasing for x < 2y. Thus, taking
k(Fn) = c0 log n, where c0 < 2 is some constant, we get that∑

k1+k2≤k(Fn)

(log log Fm)k1−1 (log log(Fn/Fm))k2−1

(k1 − 1)!(k2 − 1)! log Fm × log(Fn/Fm)

�
∑

k≤k(Fn)

1
n3/2

(
2e log n

k − 2

)k−2

� log n

n3/2

(
2e

c0

)c0 log n

.

Choosing c0 such that c0 log(2e/c0) = c1 < 1/2 (we can choose, say, c0 = 0.3), we
get that the right hand side of the above inequality is

� log n

n3/2−c1

and summing up over n we get a convergent series. Hence, Heuristic 5.2 with
a = Fn and ã = Fm for Fn in A implies that ω(Fn) < 0.3 log n holds only for
finitely many composite integers n, which, by (2) and the definition of A, implies
that ω(Fn) � log n holds for all composite integers n. Actually, our choice of A
takes into account an algebraic reason for which Fn has more than 0.3 log n divisors.
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