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Abstract. Let k be a number �eld, X a smooth curve over k, and f a non-
constant element of the function �eld k(X). If υ is a prime of k then denote the
completion of k at υ by kυ and let Xυ := X × kυ . In this paper we introduce
an abelian extension l/k, depending on f in a natural way, which we call the
class �eld of k belonging to f . We give an explicit homomorphismY

Pic(Xv)→ Gal(l/k),

such that the image of Pic(X) in
Q

Pic(Xv) is in the kernel of this map.
We explain how this can often obstruct the existence of k-rational divisors of
certain degrees.

1. Introduction

Various classical counterexamples to the Hasse principle suggest that functions
on a variety can `conspire' with the reciprocity law for abelian extensions of number
�elds so as to `interfere' with the existence of global points. This is clear in Lind's
counterexample to the Hasse principle in genus 1 (see [2, page 284] or [26, pp. 316�
318]), and again in Swinnerton-Dyer's counterexample to the Hasse principle for
cubic surfaces (see [28]). Such examples have long since been interpreted in terms
of the Brauer�Manin obstruction, and were the starting point of a great deal of
theory (see for example [27]).

In this paper we restrict ourselves to curves, and it is our purpose to make this
`conspiratorial interference' of functions plus reciprocity explicit and transparent.
Our motivation is to furnish the basis for attempts at proving that a given curve,
suspected of having no rational divisors of a certain degree, does indeed have no
rational divisors of that degree. In this light we give detailed guidance for the case
of 2-coverings of elliptic curves over the rationals.

Before stating the main theorem of this paper we set some notation. We start
by letting k be a perfect �eld, and X a complete, non-singular and absolutely
irreducible curve over k. We denote the function �eld of X over k by k(X). A
closed point P of X corresponds to a discrete valuation ring OP of k(X) containing
k, with maximal ideal mP . The residue �eld of P is by de�nition k(P) := OP/mP ,
and is a �nite extension of k. The degree of P is given by |P| := [k(P) : k]. If
g ∈ k(X) is regular at point P, that is g ∈ OP , then the value of g at P, denoted
by g(P), is de�ned to be the image of g in k(P); it thus makes sense to speak of the
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Normk(P)/k(g(P)) ∈ k. We will simplify the notation slightly by writing NormP
for Normk(P)/k.

We denote the set of closed points on X by Xc; this of course is all of X except
for the generic point. For P ∈ Xc let ordP : k(X)× → Z be the corresponding
valuation.

Now we specialize by letting k be a number �eld. Let Ik be its idèle group, and
Ck := Ik/k× its idèle class group. If k′ is a �nite extension of k, and n is an integer
then let

Norm
k′/k

(Ck′)n = {αn : α ∈ Norm
k′/k

(Ck′)}.

Clearly Normk′/k(Ck′)0 = {1}.
Suppose f ∈ k(X) is a non-constant element of the function �eld of X. We

associate to f the following subgroup of Ck:∏
P∈Xc

Norm
P

(Ck(P))ordP(f).

We would like this to be an open subgroup of Ck. A little exercise in class �eld
theory shows that this subgroup is open in Ck if and only if the exponents ordP(f)
do not all share a non-trivial common factor as P ranges through the support of f .
We assume this; the Existence Theorem of class �eld theory ([16, pages 208�211])
asserts the existence of a unique �nite abelian extension l/k (the class �eld of k
belonging to this group), such that

(1) Norm
l/k

(Cl) =
∏
P∈Xc

Norm
P

(Ck(P))ordP(f).

By abuse of language, we call l the class �eld of k belonging to the function f .
Let M(k) be the set of primes of k. For any υ ∈ M(k) denote the completion of

k at υ by kυ and let Xυ := X ×k kυ. If υ is any prime of k, denote the local Artin
map at υ for the abelian extension l/k by

θυ : k×υ → Gal(l/k).

We are �nally ready to state our main theorem.

Theorem 1. Let X be a complete, non-singular and absolutely irreducible curve
over the number �eld k. Let f be a non-constant element of the function �eld k(X)
such that the integers ordP(f) do not all share a non-trivial common factor as P
ranges through the support of f . Let l be the class �eld of k belonging to f (as
de�ned above).

(a) Let υ ∈ M(k). Then there exists a unique homomorphism

φυ : Pic(Xυ) → Gal(l/k),

which satis�es the following property: if Q is a closed point of Xυ that is
neither a pole nor a zero of f then

φυ ([Q]) = θυ

(
Norm
Q

(f(Q))
)

,

where [Q] denotes the class of Q in Pic(X).
(b) There exists a �nite set B of primes in M(k) such that for any υ 6∈ B we

have that φυ = 1.
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(c) The image of Pic(X) in
∏

υ∈B Pic(Xυ) (under the diagonal map) is con-
tained in the kernel of the homomorphism

(2)
∏
υ∈B

Pic(Xυ)
Q

υ∈B φυ−−−−−−→ Gal(l/k).

Note that any divisor can be moved in its equivalence class to avoid the poles
and zeros of f ; thus the map in (a) can be used to compute the image of any divisor
class in Pic(Xυ). Moreover, this fact immediately shows that if the homomorphism
φυ exists then it must indeed be unique. We shall give an explicit and very simple
recipe for the set of primes B appearing in part (b) of the Theorem. Part (c) follows
from Artin's reciprocity law, as we shall see.

We now indicate how Theorem 1 can sometimes be used to prove that the curve
X does not possess any k-rational divisors of a given degree. Let B be the �nite
set of primes whose existence is asserted in part (b) of the Theorem. From the
computational point-of-view, it seems at �rst sight that part (c) of the theorem is
not useful since the kernel of

∏
φυ is very large. It is however straightforward to

factor the homomorphism
∏

φυ through a �nite group, and so deal only with a
�nite kernel. Indeed, suppose that n is a positive integer; we obtain an induced
homomorphism

(3)
∏
υ∈B

Pic(Xυ)/n Pic(Xυ) −→ Gal(l/k)/(Gal(l/k))n

such that the image of Pic(X) in the group on the left-hand side is in the kernel
of this map, and it is noteworthy that this kernel is �nite, since the set B is �nite,
and the quotient groups Pic(Xυ)/n Pic(Xυ) are �nite too. Now an element of
Pic(Xυ)/n Pic(Xυ) does not have a well-de�ned degree, but it has a well-de�ned
degree modulo n. If 0 ≤ r < n, we denote by

(Pic(Xυ)/n Pic(Xυ))r

the subset of elements that have degree r modulo n. This subset contains the
images of

Picr(X), Picr+n(X), Picr+2n(X), . . .

in Pic(Xυ)/n Pic(Xυ). We immediately obtain the following corollary.

Corollary 1.1. With notation and assumptions as in Theorem 1, let n and r be
positive integers satisfying 0 ≤ r < n. Let

(4)
∏
υ∈B

(Pic(Xυ)/n Pic(Xυ))r −→ Gal(l/k)/Gal(l/k)n

be the map arising as the restriction of the map in (3). The subset of elements of
the set on the left-hand side sent to 1 under this map is �nite. If this subset is
empty then Picr(X),Picr+n(X),Picr+2n(X), . . . are all empty.

We will see an application of this corollary at the end. There are of course
variants of the corollary involving several functions, and we leave it to the reader
to invent his own results with the help of Theorem 1.

The paper is structured as follows: Sections 2�4 are preliminaries necessary for
the proof of Theorem 1; Section 5 completes the proof of Theorem 1; in Section 6
we interpret the obstruction of Theorem 1 in terms of torsors under tori, and in
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Section 7 we show that it is equivalent to part of the Brauer�Manin obstruction;
�nally Sections 8 and 9 are concerned with explicit examples.

At the suggestion of the referee we point out some di�erences between our
method and other methods:

• There are two general methods for showing that curves (having points ev-
erywhere locally) do not have global points. The �rst is descent and the
second is the Mordell�Weil sieve (see, for example, [1]). Descent usually
requires the computation of class groups and unit groups of number �elds.
The Mordell�Weil sieve is applicable only to curves of genus ≥ 2 and re-
quires computation of the Mordell�Weil group of the Jacobian. This in turn
again usually requires the computation of class groups and unit groups. Our
method avoids the computationally expensive detour through class groups
and unit groups and relies only on local calculations and reciprocity.

• Our method gives information on degree 1 divisors, and not just degree 1
points. In this sense it is more useful than descent and the Mordell�Weil
sieve.

In future papers we expect to work out the details of our method for various families
of curves of higher genus as well as for 3-coverings of elliptic curves. A particularly
promising direction, pioneered in a particular case in [24], is to combine our method
with the Mordell�Weil sieve.

We are indebted to Professors J.-L. Colliot-Thélène, A. N. Skorobogatov and the
referee for detailed comments and criticisms of an earlier version of this paper. We
are also grateful to J. Cremona, S. Donnelly, T. Fisher, N. Bruin and M. Stoll for
useful discussions.

2. Preliminaries

In this section we recall a result of the second-named author [23] which will allow
us, together with some class-�eld theory, to construct the homomorphism in part
(a) of Theorem 1. Recall that we are denoting, for a curve X, the set of closed
points by Xc. The divisor group of X, denoted Div(X), is the free group on the
points of Xc. The subgroup of principal divisors is denoted by Princ(X), and we
let Pic(X) := Div(X)/ Princ(X).

Lemma 2.1. Let X be a complete non-singular absolutely irreducible curve over
a perfect �eld k, and let f be a non-constant element of the function �eld k(X).
De�ne the subgroup Gf (k) ⊂ k× by

(5) Gf (k) :=
∏
P∈Xc

Norm
P

(k(P)×)ordP(f).

Then f induces a unique homomorphism

f̂ : Pic(X) → k×/Gf (k)

satisfying the following property: if Q ∈ Xc is neither a pole nor a zero of f then the

class [Q] of Q in Pic(X) is mapped, by f̂ , to the coset represented by NormQ(f(Q)).

Proof. See [23] for the proof. The proof is merely an application of Weil's reci-
procity, plus the well-known fact that every divisor can moved in its class to avoid
a given �nite set (in this case the poles and zeros of f). �
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3. A more Powerful `Moving Lemma'

We have until now made use of the idea that any divisor can be moved in its
class to avoid the support of a function f . In this section we prove a more powerful
version of this idea: over a non-archimedean local �eld, any divisor can be moved in
its class so that its reduction in the special �bre avoids the support of f , provided
X and f satisfy certain `good reduction' criteria.

Let kυ be a non-archimedean local �eld; in other words, kυ is a �nite extension
of Qp, with p a �nite prime. Denote the valuation ring of kυ by Oυ, and the group
of invertible elements of Oυ by O×υ . Let π be a uniformizer for Oυ.

Let X be a complete non-singular and absolutely irreducible curve over kυ. Let
X ⊂ PN

Oυ
be a projective model for X. We identify X with the generic �bre of X ;

since X is proper, every point of X extends to a point of X . If P is a point of X,
we denote its image in the special �bre by P̃.

Now let f be a rational function on X, which of course extends to a rational
function on X . We make the following assumptions about the model X :

(1) f does not have a zero or a pole along any component of the special �bre of
X . If the special �bre is irreducible, then υ(f) is de�ned and this condition
simply requires that υ(f) = 0.

(2) For each closed point P̃ lying on a zero or pole of f , the local ring OP̃ is
regular.

Lemma 3.1. Let X satisfy the good reduction criteria stated above. Then Pic X
is generated by the classes of points P such that f is regular and non-zero on P̃.

Proof. We write P̃1, . . . , P̃n for the distinct closed points of X where f is not in-
vertible. Suppose that P ∈ Xc and that f is either not regular or zero at P̃ . Then
P̃ must equal one of P̃1, . . . , P̃n and without loss of generality suppose P̃ = P̃1. We
construct a function h ∈ kυ(X ) simultaneously satisfying the three conditions

(i) ordP(h) = 1,
(ii) h is regular and non-zero at P̃2, . . . , P̃n,

(iii) and h is regular and non-zero along all prime divisors passing through P̃
other than P.

It is seen that P − div(h) is linearly equivalent to P and the intersection of its

support with the special �bre avoids all of P̃1, . . . , P̃n.
As we will see, the construction of h is an exercise in applying the Prime Avoid-

ance Theorem, for which see [11, Section 3.2].
Let O(1) denote the sheaf of hyperplane sections coming from the embedding

X ⊂ PN
Oυ

. This is an ample line bundle on X [13, Proposition 4.5.10]. By [13,
Corollary 4.5.4] (which is one version of the Prime Avoidance Theorem) there exist
an integer m and a homogeneous polynomial g ∈ O(m)(X ) which is non-zero at

each of the P̃i, such that U = Xg is an a�ne subscheme of X containing all the P̃i.
From now on we may work in U .

Let mi be the maximal ideal corresponding to P̃i, and let I be the prime ideal
corresponding to P. Then I 6⊆ mi for i > 1. Also I 6⊆ m2

1: for OP̃/I is regular,
being isomorphic to the ring of integers in k(P); so by [14, Chapter 0, Corollary
17.1.9] I contains an element of m1 \ m2

1. It follows from the Prime Avoidance
Theorem (which, despite the name, allows up to two of the ideals being avoided
to be non-prime) that there exists h ∈ I such that h /∈ mi for i > 1 and h /∈ m2

1.
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Clearly this means that ordP(h) = 1, and that h is non-zero at each P̃i for i > 1.
Furthermore, h is non-zero along each prime divisor D passing through P̃, other
than P. For OP̃ is regular, hence factorial; so if h were divisible both by a generator
t for I and by a generator t′ for the ideal corresponding to D, then h would be
divisible by tt′ and therefore in m2

1. �

4. Extension of Scalars

For now X denotes a non-singular, complete and absolutely irreducible curve
over a number �eld k. In preparation for the proof of Theorem 1, where we need
to replace k by its completions kυ, we study what happens to the groups Gf (k)
(de�ned in (5)) under extension of scalars. In essence, this comes down to studying
the �bres of the projection XK → X, for �eld extensions K/k, and this is what we
do in this section. We do not claim that results proved in this section are original,
but merely that we cannot �nd a convenient reference for them, and in any case it
is useful to collect them all here before embarking on the proof of Theorem 1.

4.1. Norms on Finite Algebras over Fields. We need to review (brie�y) the
de�nition of a norm and recall a few basic results about it. Our reference here
is [12, pages 16�20]. Let L be a �nite algebra over a �eld K. If β ∈ L then β
induces a K-linear transformation on L given by α 7→ βα. The norm of β, denoted
NormL/K(β), is de�ned to be the determinant of this linear transformation. It

follows that β 7→ NormL/K(β) is a homomorphism L× → K×; we denote the

image of this map by NormL/K(L×).

Lemma 4.1. Suppose K is a �eld, L is a K-algebra such that L ∼=
∏n

i=1 Ki where
the Ki are also �nite K-algebras. For β ∈ L let βi be the image of β in Ki. Then

Norm
L/K

(β) =
n∏

i=1

Norm
Ki/K

(βi).

Proof. See [12, page 20]. �

Lemma 4.2. Suppose k′ is a �nite extension of k and K is an extension of k (that
is not necessarily �nite). Let L = K ⊗k k′. Then L is a �nite algebra over K that
splits as a product of �elds

L ∼= K1 ×K2 × · · · ×Kn

where the Ki/K are �nite �eld extensions. If β ∈ k′ then let βi be the image of β
in Ki (under the composition k′ → K ⊗ k′ → Ki). Then

Norm
k′/k

(β) = Norm
L/K

(β) =
n∏

i=1

Norm
Ki/K

(βi).

Proof. See [3, page 54�55]. �

4.2. The projection XK → X. Suppose K/k is a �eld extension, not necessarily
�nite, and let pK : XK → X be the projection arising from the �bre product
XK := X ×k K. Suppose P is a closed point on X. The �bre of pK over P is
Spec(K⊗k k(P)). Now k(P)/k is �nite, and by Lemma 4.2, the algebra K⊗k k(P)
splits as a product

K ⊗k k(P) = K1 ×K2 × · · · ×Kn
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where the Ki are �nite extensions of K. As this algebra does not have nilpotents,
the �bre Spec(K ⊗k k(P)) does not have multiple points, and so the map pK is
unrami�ed. The points on this �bre are in 1-1 correspondence with the factors Ki.
Denote the point corresponding to Ki by Qi. The residue �eld of Qi is K(Qi) = Ki,
and since the extensions Ki/K are �nite, the pointsQi ∈ XK above our closed point
P ∈ X are all closed.

In what follows it simpli�es notation somewhat if we de�ne, for P ∈ Xc and
K/k an extension

(6) GP(K) := Norm
K⊗k(P)/K

(K ⊗ k(P))×.

Lemma 4.3. Suppose K/k is a �eld extension (not necessarily �nite), and let P
be a closed point of X. Let Q1, . . . ,Qn be the distinct points of XK lying above P.

(a) The points Q1, . . . ,Qn are all closed, and the pull-back of P by pk is the
divisor p∗K(P) =

∑
Qi.

(b) The algebra K ⊗k k(P) splits as a product of �elds

K ⊗k k(P) =
n∏

i=1

K(Qi).

(c) The norm groups of the residue �elds are related by

Norm
k(P)/k

(k(P)×) ⊆ GP(K) =
n∏

i=1

Norm
K(Qi)/K

(K(Qi)×)

(d) If g ∈ k(X) is regular at P, then

Norm
k(P)/k

(g(P)) =
n∏

i=1

Norm
K(Qi)/K

(g(Qi))

where we are identifying the left-hand side (an element of k) as an element
of K under the embedding k → K.

Proof. (a) and (b) follow from the preceding discussion, and (c) follows from (b)
and Lemmas 4.1 and 4.2. Let us prove (d). Suppose g ∈ k(X) is regular at P. The
`quantities' g(Qi) need a little interpretation, since g is a function on X and the
Qi are points on XK . What we are doing is regarding g as a function on XK by
identifying it with p∗K(g) = g ◦ pK . Hence g(Qi) is really just g(pK(Qi)) = g(P).
The result follows immediately from Lemma 4.2. �

Lemma 4.4. If f is a non-constant element of k(X) then

Gf (k) ⊆ Gf (K) =
∏
P∈Xc

GP(K)ordP(f).

Proof. In Lemma 4.3 we concerned ourselves with a �xed point P ∈ Xc and the
points on XK lying above it. Now we have to allow P to change, and it is convenient
to re-express part (c) of Lemma 4.3 as follows:

(7) Norm
k(P)/k

(k(P)×) ⊆ GP(K) =
∏

Q∈Xc
K

Q7→P

Norm
K(Q)/K

(K(Q)×).
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To prove the lemma we �rst recall the de�nition of Gf (k):

Gf (k) :=
∏
P∈Xc

Norm
k(P)/k

(k(P)×)ordP(f).

It thus follows from (7) that

Gf (k) ⊆
∏
P∈Xc

GP(K)ordP(f)

and to complete the proof of the lemma it is enough to show that

(8) Gf (K) =
∏
P∈Xc

GP(K)ordP(f).

For this we recall the de�nition of Gf (K):

Gf (K) :=
∏

Q∈Xc
K

Norm
K(Q)/K

(K(Q)×)ordQ(f).

As in the proof of Lemma 4.3, we need to do some re-interpretation. We (loosely)
said in the introduction that our non-constant function f ∈ k(X) again de�nes a
function on XK , which we denoted again by f . This function is in fact p∗K(f) =
f ◦pK . The zeros and poles of p∗K(f) on XK all lie above zeros and poles of f on X,
and are thus all closed points of XK . Moreover, since XK → X is unrami�ed, if P
is a closed point of X, and Q ∈ XK is lying above it then ordP(f) = ordQ(p∗K(f)).
It follows from this and the de�nition of Gf (K) above that we can write

Gf (K) =
∏
P∈Xc

 ∏
Q∈Xc

K
Q7→P

Norm
K(Q)/K

(K(Q)×)


ordP(f)

.

From this and (7) we obtain the desired equality (8). �

4.3. A Special Case: K = kυ. We now specialize to the case where K = kυ

for some prime υ ∈ M(k), and we would like to give an alternative description of
GP(kυ), for P ∈ Xc.

Lemma 4.5. If P ∈ Xc then

GP(kυ) =
∏

ω∈M(k(P))
ω|υ

Norm
ω/υ

(k(P)×ω ).

Proof. Recall the de�nition of GP(K) in (6). We would like to show that

GP(kυ) := Norm
kυ⊗k(P)/kυ

(kυ ⊗ k(P))× =
∏
ω|υ

Norm
ω/υ

(k(P)×ω )

One knows however that (see [12, page 109])

kυ ⊗ k(P) ∼=
∏
ω|υ

k(P)ω,

and taking norms of the subgroups of invertible elements on both sides completes
the proof. �
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4.4. A class-�eld-theoretic interlude. Suppose now that f is a non-constant
element of k(X), and let l be the class �eld of k belonging to f as de�ned in the
introduction.

It is traditional to identify k×υ as a subgroup of Ik via the embedding αυ 7→
(1, 1, . . . , 1, αυ, 1, . . .). Hence if G is a subgroup of Ik, and υ ∈ M(k) then it makes
sense to speak of k×υ ∩G.

Lemma 4.6. For any closed point P of X, and any prime υ ∈ M(k)

GP(kυ) = k×υ ∩ Norm
k(P)/k

(Ik(P)).

Proof. From the de�nition of norms on idèles we know that

k×υ ∩ Norm
k(P)/k

(Ik(P)) =
∏
ω|υ

Norm
ω/υ

k(P)×ω .

The lemma now follows at once from Lemma 4.5. �

Lemma 4.7. For any prime υ ∈ M(k) and any ω ∈ M(l) above it, Gf (kυ) ⊆
Normω/υ(l×ω ).

Proof. Recall that l/k is the unique abelian extension of k such that

Norm
l/k

(Cl) =
∏
P∈Xc

Norm
k(P)/k

(Ck(P))ordP(f).

This is an equality of subgroups of Ck := Ik/k×, and pulling back this relation from
Ck to Ik we get

k×Norm
l/k

(Il) = k×
∏
P∈Xc

Norm
k(P)/k

(Ik(P))ordP(f).

Now we know from Lemma 4.6 that, for P ∈ Xc,

k×υ ∩ Norm
k(P)/k

(Ik(P)) = GP(kυ)

and so we deduce that

k×υ ∩
(

k×Norm
l/k

(Il)
)
⊇

∏
P∈Xc

GP(kυ)ordP(f).

From the de�nition (5), the right-hand side of this containment is Gf (kυ). It is a
well-known (and easy) consequence of Artin's reciprocity that

Norm
ω/υ

(l×ω ) = k×υ ∩
(

k×Norm
l/k

(Il)
)

.

Thus Gf (kυ) ⊆ Normω/υ(l×ω ) and this completes the proof. �

5. Proof of Theorem 1

In this section we prove Theorem 1; throughout we maintain the assumptions
and notation of Theorem 1.
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5.1. Proof of part (a) of Theorem 1. By Lemma 2.1 we have a homomorphism

f̂ : Pic(Xυ) → k×/Gf (kυ),

given by

f̂([Q]) = Norm
Q

(f(Q))Gf (kυ),

for Q ∈ Xc
υ that is neither a pole nor a zero of f . By Lemma 4.7 we have Gf (kυ) ⊆

Normω/υ(l×ω ), and so f̂ induces a homomorphism Pic(Xυ) → k×/ Normω/υ(l×ω ),
which we may lazily call f̂ also. By local class �eld theory, the local Artin map θυ :
k× → Gal(l/k) contains Normω/υ(l×ω ) in its kernel, and thus θυ ◦ f̂ is a well-de�ned
homomorphism Pic(Xυ) → Gal(l/k); this is precisely the desired homomorphism
φυ of part (a) of Theorem 1.

5.2. Proof of part (b) of Theorem 1. Let P1, . . . ,Pn be the distinct closed
points of X belonging to the support of f . Let B the set of primes υ ∈ M(k)
satisfying at least one of these conditions:

• υ is archimedean;
• υ is rami�ed in l/k;
• υ is a prime of bad reduction for X (in other words the special �bre is
singular);

• ordυ(f) 6= 0, where υ is here thought of as a place on k(X).

It is clear that the set B is �nite.
Suppose now that υ 6∈ B. By Lemma 3.1, Pic(Xυ) is generated by classes of

closed points Q such that f is regular and non-zero at Q̃. Thus that for such Q,

f̂([Q]) = Norm
Q

(f(Q)) ∈ O×υ .

But υ is unrami�ed in l/k. Thus local class �eld theory tells us that O×υ is contained
in the kernel of the local Artin map θυ (see for example [16, page 221]). Hence

φυ := θυ ◦ f̂ = 1. This completes the proof of part (b) of Theorem 1.

5.3. Proof of part (c) of Theorem 1. We would like to prove that the diagonal
image of Pic(X) is contained in the kernel of the map (2). By part (b) we know
that φυ = 1 for all υ 6∈ B. Hence, it is su�cient to show that the diagonal image
of Pic(X) is contained in the kernel of the map∏

υ∈M(k)

Pic(Xυ)
Q

υ∈M(k) φυ

−−−−−−−−→ Gal(l/k).

It is enough to show that the class of any Q ∈ Xc that is not in the support of f
belongs to the kernel of the above map. But for such Q we see that∏

φυ([Q]) =
∏

θυ(f(Q)) = 1,

by Artin's reciprocity law, since f(Q) ∈ k. This completes the proof of Theorem 1.
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6. Interpretation as Torsors under Tori

In this section we interpret the obstruction of Theorem 1 in terms of torsors under
tori; we are grateful to Alexei Skorobogatov for pointing out this interpretation to
us. This section is closely related to Section 4.4 of [27]. We write X̄ to denote the
base extension of X to the algebraic closure k̄ of k. Let D denote the subgroup
of Div X̄ generated by the points P such that ordP(f) 6= 0, and consider the
embedding Z → D given by sending 1 to (f). This map of Galois modules has a
quotient, which we denote by M :

(9) 0 → Z (f)−−→ D → M → 0.

Note that M is torsion-free if and only if the ordP(f) are coprime.
We now want to consider the dual of the sequence (9). Recall that, if A is a

�nitely generated abelian group with a continuous action of Gal(k̄/k), then there is
an algebraic k-group of multiplicative type, which we will denote G = Hom(A, Gm),
such that the points of G over a �eld K ⊆ k̄ are the set Hom(A, k̄×)ΓK , where ΓK

is the subgroup of Gal(k̄/k) �xing K. We then have Ĝ = Hom(G, Gm) ∼= A, and
this correspondence is a contravariant equivalence of categories.

Let S = Hom(M, Gm) and T = Hom(D, Gm). The dual sequence to (9) is

(10) 0 → S → T
Nf−−→ Gm → 0.

It is clear that D = ⊕ordP(f) 6=0 Indk(P)/k Z, and a simple exercise shows that T =∏
ordP(f) 6=0Rk(P)/kGm, where Rk(P)/k is the Weil restriction functor. Further, one

can compute that the map Nf is de�ned on each factor by (Nk(P)/k)ordP f . We
deduce that, for any �eld K containing k, the sequence (10) gives rise to an exact
sequence

(11) 0 → S(K) →
∏

ordP(f) 6=0

(k(P)⊗k K)×
Nf−−→ K× ∂−→ H1(K, S)

and so a map K×/Gf (K) → H1(K, S) which we will use to identify our obstruction
with that coming from a certain torsor under S.

The torsor in question is the variety Y → X given, away from the zeros and
poles of f , by the local equation

(12)
∏

ordP(f) 6=0

(Nk(P)/kuP)ordP f = f

where uP is a variable in k(P); by the general theory of [27, Section 4.4] this
extends to a smooth variety over X. The �bre over any K-point of X is a K-torsor
under S, and so we get a map X(K) → H1(K, S) associating to each point the
isomorphism class of its �bre. The obstruction coming from the torsor Y → X
may be stated as follows. Let (Pv) ∈

∏
v X(kv) be an adelic point of X; then the

maps X(kv) → H1(kv, S) described above give us an element α of
∏

v H1(kv, S).
A necessary condition for the point (Pv) to come from a global point is that α lie
in the image of H1(k, S).

For any �nite extension L/K we can compose X(L) → H1(L, S) with the
corestriction H1(L, S) → H1(K, S). This allows us to de�ne a map Div XK →
H1(K, S); and, since X is proper, this map in fact factors through Pic XK (see
Proposition 12 of [8]).
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Theorem 2. The obstruction of Theorem 1 is the same as that coming from the
torsor Y → X.

The proof of the theorem relies on comparing the sequence coming from Poitou�
Tate duality for S with the reciprocity map.

Lemma 6.1. Let K be any �eld containing k. The diagram

Pic XK
f //

&&MMMMMMMMMMM K×/Gf (K)

∂

��
H1(K, S)

commutes, where the diagonal arrow comes from the torsor Y → X.

Proof. It is enough to show this for any point P ∈ X(K) outside the support of
(f). The map ∂ takes an element x ∈ K× to the class of the �bre N−1

f (x) (see [21,
I, 5.4]). So the composition ∂.f takes P to the class of the �bre N−1

f (f(P)), which
by (12) is the same as the �bre of Y → X over P. �

The following lemma will complete the proof of the theorem.

Lemma 6.2. There is a diagram

(13) k×/Nl× //

∂

��

Ik/NIl
θ //

Q
v ∂

��

Gal(l/k)

��

// 0

H1(k, S) // ∏′
v H1(kv, S) // H1(k, M)∗ // 0

with exact rows, and which commutes up to sign. The notation
∏′

denotes the
restricted product with respect to the unrami�ed subgroups of H1(kv, S).

Proof. The top row of the diagram is from class �eld theory, and the bottom row
is from Poitou�Tate duality applied to M (see [19, I, 4.20]). We just need to check
that they �t together as shown.

We take Ext groups (of Gal(k̄/k)-modules) from the sequence (9) to the second
short exact sequence

0 → k̄× → Ik̄ → Ck̄ → 0
to get the following diagram.

Homk(D, k̄×) //

��

Homk(D, Ik̄) //

��

Homk(D,Ck̄)

��
Homk(Z, k̄×) //

��

Homk(Z, Ik̄) //

��

Homk(Z, Ck̄)

��
Ext1k(M, k̄×) //

��

Ext1k(M, Ik̄) //

��

Ext1k(M,Ck̄)

��
Ext1k(D, k̄×) // Ext1k(D, Ik̄) // Ext1k(D,Ck̄)
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Using Lemmas 4.12 and 4.13 of Chapter I of [19], we can identify these groups
with more familiar ones.

(14)
∏
P k(P)× //

Nf

��

∏
P Ik(P)

//

Nf

��

∏
P Ck(P)

++WWWWWWW

Nf

��
H2(k, D)∗

��
k× //

∂

��

Ik
//

Q
v ∂

��

Ck θ
++WWWWWWWWWW

��
Gal(kab/k)

��
H1(k, S) //

��

∏′
v H1(kv, S) //

��

Ext1(M,Ck̄) ∼
++WWWWWW

��
H1(k, M)∗

��
0 // 0 // 0 ∼

,,XXXXXXXXXXXXXXX

0
Straight rows and columns are still exact here; the diagonal arrows come from the
global duality pairing. The diagram commutes up to sign, and one can check that
the maps marked as ∂ are indeed. We have de�ned l so that Nl/kCl coincides
with the image in Ck of the map Nf ; class �eld theory says that the reciprocity
map θ induces an isomorphism between Ck/Nl/kCl and Gal(l/k). Putting all this
together, we deduce the lemma. �

7. Relation to the Brauer�Manin obstruction

Using the results of the previous section, it is possible to show that the obstruc-
tion described in this article is equivalent to part of the Brauer�Manin obstruction.
We will �rst brie�y recall some de�nitions.

For the de�nition and properties of the Brauer group Br X of a scheme X, we
refer the reader to [15]. For our purposes, it is enough to know that the Brauer group
of a smooth, absolutely irreducible curve X over a number �eld k is a subgroup of
the Brauer group of its function �eld, characterised by the following exact sequence:

(15) 0 → Br X → H2(k, k(X̄)×) → H2(k, Div X̄).

An element A of the Brauer group can be evaluated at a point x ∈ X(K), where K
is any �eld containing k, to obtain an element A(x) of Br K. Let X(Ak) be the set
of adelic points of X (which is equal to

∏
v X(kv) when X is complete, the product

being over all places of k). We can de�ne a map from Br X × X(Ak) to Q/Z as
follows:

(A, (xv)) 7→
∑

v

invv(A(xv)).

Manin [17] observed that, if (xv) comes from a global point of X, then its image
under this map must be 0. With this in mind, we de�ne, for any subgroup B of
Br X,

X(Ak)B := {(xv) ∈ X(Ak) |
∑

v

invv(A(xv)) = 0 for all A ∈ B}.

If X(Ak)B = ∅ for some B, then it follows that X(k) = ∅ and we say that there is
a Brauer�Manin obstruction to the existence of rational points on X, coming from
B. The concept may be extended in an obvious way to give an obstruction to the
existence of rational zero-cycles on X.
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Elements of the Brauer group can be constructed using cup products, as follows.
The character group of Gal(k̄/k) can be identi�ed with H1(k, Q/Z). There is an
isomorphism δ : H1(k, Q/Z) → H2(k, Z) which is the boundary map of cohomology
arising from the exact sequence 0 → Z → Q → Q/Z → 0. Let f ∈ k(X)× be a
function on X, and let χ ∈ H1(k, Q/Z) be a character of the absolute Galois group
of k. Then the cup-product pairing

H0(k, k(X̄))×H2(k, Z) → H2(k, k(X̄))

gives us an element f ∪ δχ ∈ H2(k, k(X̄)). With f and l as before, we will de�ne
Aχ := f ∪ δχ, and Brf (X) := {Aχ : χ ∈ Gal(l/k)∗}.

Theorem 3. (a) Let χ be a character of Gal(l/k), which we identify with its
lift to Gal(k̄/k). Then Aχ lies in the Brauer group of X.

(b) The obstruction of Theorem 1 is equivalent to the Brauer�Manin obstruc-
tion associated to Brf (X).

Proof. To prove (a), we will show that (f)∪ δχ = 0 in H2(k, Div X̄). By (15), this
will show that Aχ lies in Br X.

Consider the right-hand column of the diagram (14). This is dual to

0 → H1(k, M) → H2(k, Z)
(f)−−→ H2(k, D)

which is part of the long exact sequence in cohomology coming from (9). By
reciprocity and the de�nition of l, the kernel of the map (f) is identi�ed with
H2(l/k, Z). Now note that the map (f) is the same as the cup-product map x 7→
(f) ∪ x, because on cochains they are both simply multiplication by (f). Since
χ comes from a character on Gal(l/k), we have δχ ∈ H2(l/k, Z) and therefore
(f) ∪ δχ = 0 in H2(k, D) ⊆ H2(k, Div X̄).

To prove (b), we use the well-known equation characterising the local Artin
reciprocity map: for x ∈ k×v and χ ∈ Gal(k̄v/kv)∗, we have invv(x∪δχ) = χ(θv(x)).
Now let (xv) ∈ X(Ak) be an adelic point of X. We have

invv(Aχ(xv)) = invv(f(xv) ∪ δχ) = χ(θv(f(xv)))

and therefore

θ(f(x)) = 0 if and only if
∑

v

invv(Aχ(xv)) = 0 for all χ ∈ Gal(l/k)∗

that is, θ(f(x)) = 0 if and only if x ∈ X(Ak)Brf (X). The extension to Picard groups
is straightforward. �

8. Harmful Functions and Harmless Functions

Recall that X is a smooth curve over the number �eld k, f is a non-constant
element of k(X), and l is the class �eld of k belonging to the function f . In
Theorem 1, we constructed an explicit homomorphism∏

Pic(Xυ) → Gal(l/k)

such that the image of Pic(X) in
∏

Pic(Xυ) is contained in the kernel of this map.
We went on in the introduction to explain how this might obstruct the existence of
divisors of certain degrees. Of course all this is useless if l = k. We call f harmful
if l 6= k, and harmless if l = k; the motivation for the terminology is that a harmful
function might `harm' the Hasse principle.
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Most functions chosen at random turn out to be harmless and so do not obstruct
the Hasse principle. In this section we give some examples of harmful functions
on curves. Readers are invited to construct harmful functions for their favourite
families of curves using the results below as a model.

Proposition 8.1. Suppose that div(f) is a norm for some non-trivial abelian ex-
tension k′/k. Then f is harmful and k′ ⊆ l where l is the class �eld belonging to
f .

Proof. Write div(f) =
∑

niPi. It is immediate from the hypotheses that∏
Norm
Pi

(Ck(Pi))
ni ⊆ Norm

k′/k
(Ck′).

But the left-hand side is by de�nition Norml/k(Cl). It is immediate that k′ ⊆ l. �

Our next two results are concerned with explicit examples of harmful functions
for certain families of curves.

Corollary 8.2. Let X be the double cover of the projective line given by an a�ne
equation

X : y2 = h(x)
where h(x) ∈ k[x] is a square-free polynomial. Suppose that α, β ∈ k are such

that h(α), h(β) are non-zero, non-square and
√

h(α) and
√

h(β) generate the same
quadratic extension of k. Then the function

f =
x− α

x− β

is harmful, and the class �eld belonging to f is l = k(
√

h(α)).

Proof. Let k′ = k(
√

h(α)). Let Pα,Pβ be the points

Pα = {(α,
√

h(α)), (α,−
√

h(α))}

Pβ = {(β,
√

h(β)), (β,−
√

h(β))}
Clearly the divisor of f is Pα − Pβ . The residue �elds of Pα and Pβ are both
isomorphic to k′. Thus

Norm(Cl) = Norm(Ck′) Norm(Ck′)−1 = Norm(Ck′).

Since l and k′ are both abelian extensions of k we see that

l = k′ = k(
√

h(α)).

�

It is easy to formulate and prove a generalization of Corollary 8.2 to cyclic covers
of the projective line provided the �eld k contains the appropriate root of unity.

Corollary 8.3. Let X be the genus 1 curve

X : y2 = ax4 + bx3 + cx2 + dx + e,

where the polynomial on the right-hand side is square-free, de�ned over k, and
a 6= 0. Let α ∈ k× and let

f = y −
(

b

2α
x2 + αx +

d

2α

)
,
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and note that

ax4 + bx3 + cx2 + dx + e−
(

b

2α
x2 + αx +

d

2α

)2

= βx4 + γx2 + δ

for some β, γ, δ ∈ k. Suppose that βx4 + γx2 + δ is irreducible with βδ and (γ2 −
4βδ)βδ both being non-zero and non-square in k. Then f is harmful and l =
k(

√
γ2 − 4βδ).

Proof. Suppose a is a non-square, the proof being similar in the case a is a square.
Let P∞ be the point that corresponds to the (conjugate) pair of elements of X(k)
at in�nity. Clearly k(P∞) = k(

√
a). Let µ1, . . . , µ4 denote the four roots of βx4 +

γx2 + δ, and let

ηi =
b

2α
µ2

i + αµi +
d

2α
.

Write
P0 = {(µ1, η1), . . . , (µ4, η4)};

clearly P0 ∈ X with residue �eld isomorphic to k(µ1). The divisor of f is P0−2P∞.
Thus

Norm(Cl) = Norm(Ck(µ1)) Norm(Ck(
√

a))
−2.

The conditions of the corollary ensure that the Galois group of βx4 + γx2 + δ is
D8 (see [20, page 63]). Clearly, the (degree 4) extension k(µ1)/k is not Galois,
and hence not abelian. Therefore the maximal abelian subextension of k(µ1) is

k′ = k(
√

γ2 − 4βδ). By the Norm Limitation Theorem ([16, pages 208�211])

Norm(Ck(µ1)) = Norm(Ck′).

Further
Norm(Ck(

√
a))

−2 ⊆ C2
k ⊆ Norm(Ck′),

since k′/k is a quadratic extension. Hence

Norm(Cl) = Norm(Ck′)

and this implies that l = k′ = k(
√

γ2 − 4βδ). �

9. 2-Coverings of Elliptic Curves

In this section we restrict ourselves to genus 1 curves of the form

X : y2 = ax4 + bx3 + cx2 + dx + e

where a, b, c, d, e ∈ Z and the polynomial on the right-hand side is separable. The
curves X are 2-coverings of elliptic curves. We let the ground �eld be k = Q. We
shall always assume that X has degree 1 points everywhere locally, and that we
want to prove the non-existence of degree 1 points over Q if possible. Curves X arise
naturally in 2-descent algorithms for elliptic curves. If we have an algorithm for
deciding the existence of rational points on curves X, we would have an algorithm
for computing Mordell�Weil groups of elliptic curves over the rationals; for more
on this see [10, Section 3.6]. The reader may also like to compare what follows with
[18], [5], and [22]. In particular, the crude and tentative approach taken in [22] was
one of the main inspirations behind the current paper.

We suppose that f is a harmful function arising as in Corollary 8.2. Let l be
the class �eld belonging to f which must be a quadratic �eld. Hence we can write
l = Q(

√
D) for some square-free integer D 6= 1. From Theorem 1 we know of the
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existence of a �nite set B of primes such that the image of Pic(X) in
∏

p∈B Pic(Xp)
is in the kernel of

(16)
∏
p∈B

Pic(Xp)
Q

p∈B φp

−−−−−−→ Gal(l/Q).

To put this to use we need to look at how to compute the following:

(a) Pic(Xp)/2 Pic(Xp) for any given prime p.
(b) The local Artin map θp.
(c) A suitable set of primes B, such that φp = 1 for p 6∈ B.

9.1. Computing Pic(Xp)/2 Pic(Xp). What we mean is to compute a Z/2Z-basis
for Pic(Xp)/2 Pic(Xp) for a �xed prime p. To simplify the computations that will
come later we insist that this basis satis�es the following two conditions:

(i) The elements of this basis are all (classes of) points of degree 1.
(ii) None of these elements are zeros or poles of f .

We show that this is possible and explain how to construct such a basis simultane-
ously.

First recall our assumption that the curve X has degree 1 points everywhere
locally, and so degree 1 points over Qp. Thus let P0 ∈ X(Qp). For how to compute
such a point see [10, pages 80�82]. In fact the algorithm for �nding such a P0 has
steps where one can make in�nitely many choices of a certain parameter, and each
choice leads to a di�erent point P0. By making a suitable choice we can ensure that
P0 ∈ X(Qp) is neither a zero nor a pole of f . Next we can construct an explicit
parameterization

ρ : E(Qp) → X(Qp)

for some Weierstrass elliptic curve E (the Jacobian of X) de�ned over Qp, such that
ρ(O) = P0 (for this see [4, pages 35�36]). It follows that E(Qp) is isomorphic to

Pic0(Xp) via the map sending Q ∈ E(Qp) to the class of ρ(Q)−P0. One knows how
to compute E(Qp)/2E(Qp) (see [25]). Let Q1, . . . , Qr be a basis for E(Qp)/2E(Qp).
We can `adjust' Q1, . . . , Qr, if necessary, by adding suitable elements of 2E(Qp),
so as to make all of the ρ(Qi) neither zeros nor poles of f . Let Pi = ρ(Qi) for
i = 1, . . . , r. It follows from what has been said so far that the classes of P0, . . . , Pr

are a basis for Pic(Xp)/2 Pic(Xp) satisfying the conditions (i) and (ii) above.
Perhaps it is helpful to say something about the p-adic precision needed. Basi-

cally, we need below to compute the local Artin map for f(Pi). If ordp(f(Pi)) = ri

then we need f(Pi) modulo pri+1 if p is odd and modulo 2ri+3 for p = 2. This
enables us to decide if the points Pi have been computed to enough p-adic precision,
and if not we simply recompute them to a su�cient precision.

9.2. The local Artin map θp. Recall that the class �eld l is a quadratic exten-

sion of Q, and that we wrote l = Q(
√

D), where D is a square-free integer. We
identify Gal (l/Q) with the (multiplicative) group of two elements {1,−1}. Thus
θp : Q×p → {1,−1} is the map that sends an element α ∈ Qp to 1 if α is a local
norm, and −1 if α is not a local norm. Note that if α ∈ Qp then θp(α) is just the
Hilbert symbol (α, D)p, and can easily be determined from standard formulae for
the Hilbert symbol as in [7, pages 161�162].
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9.3. The Set of `Bad Primes' B. We now come to the problem of explicitly
constructing the set B with the property that if p is a prime not included in B then

φ̂p = 1. Whilst we can use the recipe given in page 10, it is easier to construct a
suitable set B from scratch.

For our curve X above let h(x) = ax4 + bx3 + cx2 + dx + e. Suppose α, β ∈ Q
such that

√
h(α),

√
h(β) generate the same quadratic extension, and let

(17) f =
x− α

x− β
.

That is f is arising as in Corollary 8.2. From that result the class �eld belonging to
f is l = Q(

√
D), where D is the square-free part of h(α) (and is the square-free part

of h(β) as well). Let B be the set containing the rami�ed primes (i.e. those dividing
the discriminant of l), 2 unless it is split, the primes belonging to the denominators
of α, β unless they are split, and the primes belonging to the support of h(α), h(β)
unless they are split. The archimedean prime ∞ is included only if l is complex.

Lemma 9.1. For all p /∈ B, we have φ̂p = 1.

Proof. We have excluded all split primes from B for the following reason: if p is

split then lω = Qp (for any prime ω of l above p), and since φ̂p is a homomorphism

φ̂p : Pic(Xp) → Qp/ Norm(l×ω )

we see that φ̂p = 1. Similarly, if l is real then φ̂ = 1.
Suppose p /∈ B and we would like to show that φ̂p = 1. We may assume that

p is non-archimedean, odd and (from the above) inert. Since B contains all the

rami�ed primes, we reduce to the case when p is non-split, and hence
(

D
p

)
= −1.

Clearly 2 Pic(Xp) is in the kernel of φ̂p, and we know from the discussion above
that Pic(Xp)/2 Pic(Xp) has a basis consisting of degree 1 points that are neither
zeros nor poles of f . It is su�cient to show that for every P ∈ X(Qp) that is

neither a zero nor a pole of f we have φ̂p([P ]) = 1. From the de�nition of φ̂p we
see that we must prove, for any such such a point, that f(P ) ∈ Norm(l×ω ). We
claim that υp(f(P )) = 0. Since p is unrami�ed, local class �eld theory tells us that
Norm(O×ω ) = Z×p . It follows from our claim that f(P ) ∈ Z×p .

Thus to complete our proof all that remains is to prove that υp(f(P )) = 0.
Rearranging (17), we see that x = (βf −α)/(f −1). Substituting into the equation
for X and clearing the denominators we get

(18) g2 = a′f4 + b′f3 + c′f2 + d′f + e′

where g = y(f − 1), a′ = h(β), e′ = h(α). Now from the de�nition of B we know

that α, β ∈ Zp, and so a′, . . . , e′ ∈ Zp. If υp(f(P )) < 0 then
(

a′

p

)
= 1, and if

υp(f(P )) > 0 then
(

e′

p

)
= 1. However it is easy to see that both must be −1 (since

they are both equivalent to D modulo squares) and hence υp(f(P )) = 0. �

9.4. An Example. The �rst optimal elliptic curve in Cremona's tables having
non-trivial Tate�Shafarevich group is the curve 571A. This is not the �rst elliptic
curve with non-trivial Tate�Shafarevich group (as observed in [9]), but for us it
is a natural example as it is treated elsewhere by more complicated methods (see
below). Here the Tate�Shafarevich group has order 4 and so has 3 non-trivial
elements of order 2. These elements can be represented as genus 1 double covers
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of the projective line. We apply the above to one of these elements of order 2,
represented by the curve:

X : y2 = −727x4 − 104x3 + 92x2 + 4x− 4.

This curve is treated in [18, page 402], [5] and [22], though we claim that our
treatment here is the most elegant to date. Let h(x) = −727x4 − 104x3 + 92x2 +
4x− 4. Note that

h(0) = −1× 22, h

(
−16
53

)
=
−1× 22

534
.

Corollary 8.2 suggests that we let

f =
1
x

(
x +

16
53

)
.

The corresponding class �eld is l = Q(i). We can take the set B = {∞, 2} (the
prime 53 is split). The following table summarizes the results of the calculations
using the method outlined above:

Primes Basis for Pic(Xp)/2 Pic(Xp) f(P ) φp(P )
p = ∞ P0 = (−0.3018, 0.0003 . . .) −0.00028 . . . −1
p = 2 P0 = (2−1, 2−2 + 1 + 2 + . . .) 1 + 25 + . . . 1

P1 = (2−4 + 2−1 + . . . , 2−8 + 2−6 + . . .) 1 + 28 + . . . 1

Thus for any divisor class [D] in Pic(X∞) we have that φ∞([D]) = (−1)deg(D).
Also for any divisor class [D] in Pic(X2) we have that φ2([D]) = 1. Hence if [D] is
a divisor class in Pic(X) then∏

p∈B

φp([D]) = (−1)deg(D).

However Pic(X) is in the kernel of
∏

φp. It is immediate that X does not have any
rational divisors of odd degree. In particular X does not have any rational points
of degree 1.
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