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Abstract. Suppose that {Un}n≥0 is a Lucas sequence, and suppose that

l1, . . . , lt are primes. We show that the equation

Un1 · · ·Unm = ±lx1
1 · · · lxt

t yp, p prime, m < p,

has only finitely many solutions. Moreover, we explain a practical method of
solving these equations. For example, if {Fn}n≥0 is the Fibonacci sequence,

then we solve the equation

Fn1 · · ·Fnm = 2x1 · 3x2 · 5x3 · · · 541x100yp

under the restrictions: p is prime and m < p.

1. Introduction and Results

The problem of proving that 0, 1, 8, 144 are the only perfect powers in the
Fibonacci sequence was a classical problem that attracted much attention during
the past 40 years. It was finally solved [8] in 2003 using a combination of tools
from Wiles’ proof of Fermat’s Last Theorem and Baker’s theory of linear forms in
logarithms. In [3] it is explained that the method used in [8] can be applied to a
wide range of Lucas sequences (defined below).

The last 40 years have also seen many ad hoc techniques applied to the problem
of determining perfect powers in Lucas sequences, as well as several theoretical
finiteness results. In this paper, we systematise, generalise and extend the many
tricks and theorems appearing in the literature into a coherent theory. One novelty
of this paper is that we deal systematically with the problem of determining the
perfect powers arising as products of finitely many terms in a Lucas sequence. We
prove a finiteness-type result (the Finiteness Theorem); moreover, we show that this
problem—roughly speaking—reduces to the problem of determining the perfect
powers in the Lucas sequence (the Reduction Theorem), which as we indicated
above can be solved by the method of [8]. As an illustration, writing {Fn}n≥0 for the
Fibonacci sequence, we show that the only solutions of the equation FmFn = yp in
integers 2 ≤ m < n and p ≥ 2 are given by F2F6 = 8, F3F6 = 16 and F2F12 = 144.
This extends a result of Cohn [10], who solved this equation for the case p = 2.

We now state our results precisely. Let r, s be non-zero integers with ∆ =
r2 + 4s 6= 0. Let α, β be the roots of the equation x2 − rx − s = 0 with the
convention that |α| ≥ |β|. We define the Lucas sequence {Un}n≥0 with parameters
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r, s to be the sequence

Un =
αn − βn

α− β
.

This is also the sequence given by U0 = 0, U1 = 1 and Un+2 = rUn+1 + sUn for all
n ≥ 0. We say that the sequence {Un}n≥0 is non-degenerate if α/β is not a root
of unity. Throughout we suppose, often implicitly, that the Lucas sequence under
consideration is non-degenerate. The case r = s = 1 corresponds to the Fibonacci
sequence {Fn}n≥0.

In what follows, we repeatedly use the following notation. If T = {l1, . . . , lt} is
a finite set of primes, we write T for the set of integers of the form

±lx1
1 lx2

2 · · · lxt
t , xi ≥ 0.

Theorem 1. (The Finiteness Theorem) Suppose that {Un}n≥0 is a non-degenerate
Lucas sequence, and that T is a finite set of primes. There exists an effectively
computable constant c depending only on the sequence {Un}n≥0 and the set T such
that if

(1)
m∏

i=1

Uni = µyp, µ ∈ T , m, ni, y ∈ Z+, p prime, m < p,

then ni < c for i = 1, . . . , m.

Our Finiteness Theorem does give an algorithm for solving equation (1), but it
is by no means a practical one, since the computable constant c mentioned in the
theorem is astronomical. We do however explain a method that should work in
practice. Our method is based on the following result, which is also used in the
proof of the Finiteness Theorem.

Theorem 2. (The Reduction Theorem) Suppose that {Un}n≥0 is a non-degenerate
Lucas sequence, and T is a finite set of primes. Suppose n1, . . . , nm satisfy (1),
and let q be the greatest prime divisor of n1 · · ·nm. Then, there exists a com-
putable positive integer A, and a finite computable set Q, both depending only on
the sequence {Un}n≥0 and the set T , such that either q ∈ Q or

(2) Uq = ±A(q−1)/2zp

for some z ∈ Z+.

Later on we give a precise and practical recipe for writing down the integer A
and set Q appearing in the statement of the Reduction Theorem. Thus, applying
the method of [8] and [3] to equation (2), we should be able to obtain an upper
bound for the prime divisors of n1 . . . nm in equation (1). Once this is done, we
explain a completely practical algorithm for solving (1): we call this the Distillation
Algorithm. In essence the Reduction Theorem reduces (1) to (2); when r and s are
coprime it turns out that A = 1 and so we reduce to the equation

Uq = zp.

When applied to the Fibonacci sequence, our Distillation Algorithm gives the
following results.
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Theorem 3. Let {Fn}n≥0 be the Fibonacci sequence. If

(3)
m∏

i=1

Fni = yp, ni, m, y ∈ Z+, p prime, m < p,

then the indices ni belong to the set {1, 2, 3, 4, 6, 12}. Moreover, the solutions to the
equation FmFn = yp with 1 ≤ m ≤ n and p ≥ 2 are given by

• m = n,
• m, n = 1, 2,
• n = 6, m = 1, 2, 3,
• n = 12, m = 1, 2.

In fact, if we maintain the assumption m < p, then we can be far more ambitious
as the following theorem shows.

Theorem 4. Let {Fn}n≥0 be the Fibonacci sequence. Let T be the set of primes l
satisfying 2 ≤ l < 541; this is the set of the first hundred primes. If

(4)
m∏

i=1

Fni = µyp, µ ∈ T , ni, m, y ∈ Z+, p prime, m < p,

then the indices ni belong to the set

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19,

20, 21, 22, 24, 26, 27, 28, 30, 36, 42, 44} .

Our last application is to unidigital numbers: we call a positive integer unidigital
if all the digits of its base 10 representation are the same.

Theorem 5. Let Un = (10n − 1)/(10 − 1). The only pairs of unidigital numbers
whose products are perfect powers are as follows:

• d Un × d Un where n ≥ 1 and d = 1, 2, . . . , 9, or
• Un × 4 Un where n ≥ 1, or
• Un × 9 Un where n ≥ 1, or
• 1× 8 or 2× 4 or 3× 9 or 4× 8.

The present paper is organised as follows. In Section 2, we outline the links
between the current paper and other papers appearing in the literature. Sections 3
and 5 are devoted to some preliminary results about Lucas sequences that are
needed in the proofs of the Theorems. The Reduction Theorem is proved in three
stages: A weak version is proved in Section 4, an intermediate version in Section 6,
and a full-strength version in Section 7. In particular, the version of the Reduction
Theorem in Section 7 gives completely explicit recipes for the set Q and the integer
A appearing in the statement of the theorem. The Finiteness Theorem is established
in Section 8. The Distillation Algorithm, which concerns the practical resolution
of equation (1) once equation (2) had been solved, is discussed in Section 9. The
proofs of Theorems 3, 4 and 5 are given in Sections 10 and 11. Finally, the last
section is devoted to a few concluding remarks. In particular, in the last section,
we present a conjecture which if proven would allow us to remove the restriction
m < p in the above theorems.



4 YANN BUGEAUD, FLORIAN LUCA, MAURICE MIGNOTTE, SAMIR SIKSEK

We are grateful to Professor Paulo Ribenboim for suggesting to us to study the
equation FnFm = yp which was the starting point of this work. We are also grateful
to Mihai Cipu and the referee who suggested corrections to previous versions.

2. Links to Previous Works

In this section, we explain the link between this paper and previous works on
Lucas sequences.

The Reduction Theorem is present behind the scenes in many papers concerning
Lucas sequences. In a few of these papers, some explicit, though weak, version of
the Reduction Theorem appears.

For example, Pethő [15] and Robbins [23], independently, established that if p is
prime, p ≥ 3 and Fn = yp for some integer y, then either n = 0, 1, 2, 6, or there
exists a prime q | n such that Fq = yp

1 for some integer y1. Clearly, this result
can be regarded as a weak version of the Reduction Theorem for the Fibonacci
sequence.

In [11] Inkeri solved the equation axn−1
x−1 = yp for 1 < a < x ≤ 10. This was

extended by Bugeaud [2] to 1 ≤ a < x ≤ 100. Lemma 1 of Bugeaud’s paper is
again a weak version of the Reduction Theorem for the Lucas sequence xn−1

x−1 . That
paper also features an argument similar in spirit to our Distillation Algorithm, and
relies on the fact that the equation xn−1

x−1 = yp was solved previously by Bugeaud
and Mignotte [5] for x = zt with 2 ≤ z ≤ 104 and t ≥ 1. The results of [2] can now
be easily deduced using our Reduction Theorem and Distillation Algorithm.

In [19, 20], Ribenboim gave an algorithm for determining terms of the form Cxh

in Lucas sequences, under various restrictions: for example, for h ≥ 3 he supposes
that the discriminant ∆ is positive, and the integers r, s appearing in the definition
of the Lucas sequence are coprime. The algorithm is similar in spirit to ours but no
version of the Reduction Theorem is made explicit. Even under these restrictions
it is somewhat weaker than our algorithm. For example, if we want to solve the
equation Fn = qmyp for some prime q with the algorithm in [20], we must know
the solutions to Fn = 2kyp. By contrast, our Reduction Theorem and Distillation
Algorithm only demand knowledge of the solutions of Fn = yp.

In many other papers one finds tortuous arguments that would have been cir-
cumvented using the Reduction Theorem and the Distillation Algorithm. To save
other authors the embarrassment, we mention only one example of this which in-
volves some of the authors of this paper. In [7], the equation Fn = 2kyp is solved
using the previous result on Fn = yp. The ad hoc (one page) argument can now be
replaced with a trivial (one line) calculation. The reader is invited to perform this
calculation after reading this paper.

The equation UnUm = y2 was studied—in various degrees of generality—by
several authors: for example by Cohn in [10], by Ribenboim in [16, 17, 18], and by
Ribenboim and McDaniel [21, 22]. Notice that this equation is not covered by our
Theorems 1, 2, which however do cover the equation UnUm = yp for a prime p ≥ 3.
Thus, our results nicely complement those of Cohn, Ribenboim and McDaniel.

Very recently, Luca and Shorey [12] considered the equation

UnUn+d · · ·Un+(k−1)d = yp, gcd(n, d) = 1,
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which they showed has finitely many solutions. They also established that the
product of consecutive Fibonacci numbers is never a positive perfect power except
for the trivial case F1F2 = 1.

Moreover, independently, Pethő [14] and Shorey and Stewart [24] established that
every binary recurrence sequence contains at most finitely many perfect powers.
This is more general than our Finiteness Theorem for m = 1. However, we find in
the literature no result comparable with our Finiteness Theorem for m > 1.

3. Preliminaries I

We keep the notation from the Introduction. Throughout, we denote by S the
set of prime factors of 2∆, by S1 the set of prime factors of gcd(r, s), and by S2 the
set of prime factors of ∆ not belonging to S1. We write K = Q(α) = Q(β); this is
either Q or a quadratic extension of it. We write O for the ring of integers of K.

Notation. If k | n are positive integers, we write

Un,k =
Un

Uk
.

Clearly, Un,k is a rational integer.

Lemma 1. If m, n are positive integers, and k = gcd(m,n), then

gcd(Um, Un) = A Uk,

where A ∈ S1.

Proof. It is clear that Uk divides both Um and Un. Hence, A = gcd(Um, Un)/Uk is
an integer. It remains to check that A is in S1.

We work with polynomials in a variable X. Using induction on max{m,n} as
well as the formula

(Xm − 1) −Xm−n(Xn − 1) = Xm−n − 1 whenever m > n,

one proves the existence of polynomials u(X) and v(X) in Z[X] such that (1)

u(X)(Xm − 1) + v(X)(Xn − 1) = Xk − 1.

Homogenising the above relation, it follows that there exists an integer t ≥ 1 and
homogeneous polynomials u(X, Y ) and v(X, Y ) with integer coefficients such that

(5) u(X, Y ) (Xm − Y m) + v(X, Y ) (Xn − Y n) = Y t
(
Xk − Y k

)
.

Specialising relation (5) in (X, Y ) = (α, β), we get the relation

u(α, β)Um,k + v(α, β) Un,k = βt, where u(α, β), v(α, β) ∈ O.

Assume now that q is a prime dividing A. Let q be a prime ideal of O dividing
q. Then q divides both Un,k and Um,k and by the above relation q | βt. Since q is
prime, we get that q | β. Since α and β can be interchanged, we get that q divides
α as well, therefore it also divides r = α+β and s = αβ, which completes the proof
of the lemma. �

Lemma 2. Suppose that n = kq where n, k and q are positive integers. Then
gcd(Uk, Un,k) divides qε for some ε ∈ S.

1One knows from cyclotomy that Xk − 1 is the greatest common divisor of Xm − 1 and
Xn − 1. Thus the existence of u(X), v(X) ∈ Q[X] satisfying the given relation follows from
Euclid’s Algorithm. Here we need a stronger result, namely that we can take u(X), v(X) ∈ Z[X].
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Proof. We note that

Uk =
αk − βk

α− β
,

and
Un,k = αk(q−1) + αk(q−2)βk + · · ·+ βk(q−1).

Let g = gcd(Uk, Un,k). Since g | Uk, we see that

αk ≡ βk (mod gO).

But g | Un,k, so

0 ≡ αk(q−1) + αk(q−2)βk + · · ·+ βk(q−1) ≡ qαk(q−1) (mod gO).

Thus, gO divides the ideal qαk(q−1)O and similarly the ideal qβk(q−1)O. The
Lemma follows since the greatest common divisor of the ideals αO and βO divides
∆. �

Lemma 3. Suppose that k ≥ 1 is an integer and q /∈ S is prime. If q | Uk, then
gcd(k, q2 − 1) > 1.

Proof. We may suppose that k > 1. Let q be a prime ideal of O dividing q. Then

αk ≡ βk (mod q).

We see that if q divides either α or β, then it divides both, and hence q | ∆, which
contradicts our assumption that q /∈ S. We deduce that q divides neither α, nor β.
Moreover, again since q - ∆, we see that α−β is not divisible by q. We deduce that

α

β
6≡ 1,

(
α

β

)k

≡ 1,

in the finite field O/q. However, the group (O/q)∗ has order either q− 1 or q2 − 1.
Thus,

gcd(k, q2 − 1) > 1.

�

Lemma 4. Suppose that k is odd and q /∈ S is prime. Suppose that for every prime
l | k, we have l ≥ q. Then q - Uk.

Proof. Suppose that k is odd, q /∈ S and q | Uk. By Lemma 3,

gcd(k, q2 − 1) > 1.

Since k is odd, there is some odd prime l satisfying l | k and l | (q2 − 1). But all
odd prime divisors of q2 − 1 are strictly smaller than q. The Lemma follows. �

Lemma 5. Suppose that n is an integer and let q be its smallest prime factor.
Write n = kq. Then gcd(Uk, Un,k) ∈ S.

Proof. By Lemma 2, gcd(Uk, Un,k) divides qε, where ε ∈ S. If n is even, then q = 2
is in S and there is nothing more to prove. Likewise, there is nothing more to prove
if q ∈ S.

Thus, suppose that n is odd and that q /∈ S. Now Lemma 4 immediately gives
q - Uk, and this completes the proof. �

Lemma 6. Let n > 1 be an integer and let q be its greatest prime factor. Then

gcd(Uq, Un,q) ∈ S.
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Proof. Write n = q1q2 · · · qt with q1 ≤ q2 ≤ . . . ≤ qt = q, all prime. Let ki =
qtqt−1 · · · qi. We use induction to show, for i = 2, . . . , t, that

(6) gcd(Uki
, Un,ki

) ∈ S.

The lemma follows at once from this by observing that kt = q.
For i = 2, we have n = k2q1 and q1 is the smallest prime factor of n. Thus, the

case i = 2 follows from Lemma 5.
Now suppose 2 ≤ i < t and that (6) holds. Observe that Uki+1 | Uki

, so we get

gcd(Uki+1 , Un,ki
) ∈ S.

Moreover, qi is the smallest prime factor of ki, and ki = ki+1qi. Hence, by Lemma 5,
we have

gcd(Uki+1 , Uki,ki+1) ∈ S.

From the last two inclusions and the fact that

Un,ki+1 = Un,kiUki,ki+1 ,

we deduce that
gcd(Uki+1 , Un,ki+1) ∈ S.

This completes the proof. �

4. A Weak Version of the Reduction Theorem

We now prove the following weak version of the Reduction Theorem.

Lemma 7. Suppose that {Un}n≥0 is a non-degenerate Lucas sequence and T is a
finite set of primes. Suppose n1, . . . , nm satisfy (1). Let q be the greatest prime
divisor of n1 · · ·nm. Then

(7) Uq = ηzp

for some η ∈ S ∪ T and z ∈ Z+.

Proof. Suppose that n1, . . . , nm satisfy (1). Let q be the greatest prime divisor of
n1 · · ·nm. Reorder the indices so that q divides n1, . . . , nm′ and q does not divide
the others. By Lemma 6, we can, for i = 1, . . . , m′, write

Uni
= UqUni,q

with gcd(Uq, Uni,q) ∈ S. Moreover, for i > m′, Lemma 1 gives gcd(Uq, Uni) ∈ S. It
follows from (1) that there exists an integer G with

Um′

q G = µyp,

where the greatest common divisor of Uq and G is in S. Hence,

Um′

q = η′z′
p

for some η′ ∈ S ∪ T and z′ ∈ Z+. Now recall the assumption m < p made in (1).
Thus, m′ ≤ m < p. So,

Uq = ηzp,

where η ∈ S ∪ T and z ∈ Z+. This completes the proof of the Lemma. �
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5. Preliminaries II

Let S1 and S2 be as in Section 3; namely S1 is set of primes dividing gcd(r, s),
and S2 is the set of primes dividing ∆ but not gcd(r, s).

Lemma 8. Suppose that l /∈ S1 is a prime.
(i) If l | s then l - Un for all n ≥ 1.
(ii) If l ∈ S2 then l | Un if and only if l | n.

Proof. For (i), suppose l | s. Then l - r. It is straightforward to show that Un ≡
rn−1 (mod l) and so (i) follows.

For (ii), suppose l ∈ S2. Let Ql be the l-adic completion of Q and Kπ be a
completion of K with π | l. Write Oπ for the π-adic integers. Since l ∈ S2, we see
that π - αβ but πt || (α− β) for some t ≥ 1. Hence,

α

β
= 1 + ωπt

for some ω ∈ Oπ with π - ω. Then(
α

β

)n

≡ 1 + nωπt (mod π2t),

which shows that
αn − βn ≡ nωβnπt (mod π2t).

It follows that
Un ≡ nβn−1 (mod πt),

which proves (ii). �

Lemma 9. Suppose that l - s∆ is a prime. Then there exists an integer ml > 1
such that lt || Uml

for some t ≥ 1 and l - Um for all 1 ≤ m < ml. Moreover, for
n ≥ 1

(i) if l | Un, then ml | n;
(ii) lt || Un if and only if ml | n and l - n;
(iii) lt+1 | Un if and only if l ml | n.

Remark. The integer ml defined above is called the rank of first appearance of the
prime l for the Lucas sequence {Un} (see [20]).

Proof. Suppose that l - s∆ and let Ql, Kπ and Oπ be as in the proof of Lemma 8.
Then π - αβ(α− β) and

αl2−1 ≡ βl2−1 ≡ 1 (mod π).

It follows that l | Ul2−1. Thus, there is certainly an m > 1 such that l | Um, and
we let ml be the least such m, and t ≥ 1 be such that lt || Uml

.
For (i), suppose that n > 1 and l | Un. By assumption, l - s and so l /∈ S1; it

follows from Lemma 1 that l | Um where m = gcd(n, ml). From the minimality of
ml, we deduce that m = ml and so ml | n as desired.

Let us now prove (ii) and (iii). Note that(
α

β

)ml

= 1 + ωπt
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for some ω ∈ Oπ and π - ω. Suppose now that n = kml. Then(
α

β

)n

≡ 1 + kωπt (mod π2t).

The lemma follows immediately. �

Finally, for the proof of Theorem 1 we will need the following theorem, which is
a restatement of Theorem 9.6 from [25].

Theorem 6. Suppose that {Un}n≥0 is a non-degenerate Lucas sequence, and T is
a finite set of primes. There is an effectively computable constant c depending only
on the sequence {Un}n≥0 and the set T such that if

Un = µyp, µ ∈ T , n, y ∈ Z+, p ≥ 2,

then n < c.

6. An Intermediate Version of the Reduction Theorem

In Section 4 we proved a weak version of the Reduction Theorem. We now
prove a stronger version of that result—though one which is still weaker than the
Reduction Theorem itself. Later on we will deduce the Reduction Theorem from
the version we prove here.

We introduce another Lucas sequence {U ′
n} associated to {Un} whose arithmetic

is somewhat simpler. For l ∈ S1 let

(8) ξl = min
(

ordl(r),
⌊

ordl(s)
2

⌋)
,

and

(9) g =
∏
l∈S1

lξl , r′ =
r

g
, s′ =

s

g2
.

Clearly r′ and s′ are integers. We let {U ′
n}n≥0 be the Lucas sequence with param-

eters r′ and s′. It is easy to see that

(10) Un = gn−1U ′
n

for positive integers n. We define ∆′, S′, S′1, S′2 for sequence {U ′
n} in exactly the

same way as we defined the corresponding quantities for {Un}. If l is prime, we
write m′

l for the rank of first appearance of the prime l for the Lucas sequence
{U ′

n}.
Now we introduce some terminology and notation that will be helpful in this

section and the rest of the paper. Suppose H is a finite set of primes and B is a
non-zero integer. We say that B is a perfect power up to H if B = ηxp for some
η ∈ H, positive integer x and prime p.

As for the notation, we define

Q′ = S′2 ∪ {m′
l : l ∈ S ∪ T, l - s′∆′ and m′

l is prime} ,

and

(11) Q = {q ∈ Q′ ∪ {2} : Uq is a perfect power up to S ∪ T} .
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Lemma 10. Let Q be as above. Suppose that the ni satisfy (1), and let q be the
largest prime divisor of n1 · · ·nm. Then either q ∈ Q or q is odd and

(12) U ′
q = εzp

for some ε ∈ S′1 and z ∈ Z+.

Proof. From the weak version of the Reduction Theorem (Lemma 7), we know that
q satisfies (7) for some η ∈ S ∪ T and z ∈ Z+. If q = 2 then we see that q ∈ Q and
we are finished. Suppose from now on that q is odd.

From the relation (10) and the fact that g ∈ S1 ⊂ S ∪ T we see that U ′
q satisfies

(12) for some ε ∈ S ∪ T and z ∈ Z+. To prove the lemma, it is clearly sufficient to
show that if ε /∈ S′1 then q ∈ Q, or equivalently here that q ∈ Q′.

Suppose that ε /∈ S′1. Then ε is divisible by some prime l ∈ S ∪ T such that
l /∈ S′1. But ε | U ′

q and so l | U ′
q. We now utilise Lemma 8 with the sequence {U ′

n}
instead of {Un}. First we see that l - s′. If l ∈ S′2 then l | q and so q = l ∈ S′2 ⊆ Q′

and we are finished.
From now on, we may suppose that l - s′ and l /∈ S′1∪S′2; in other words l - s′∆′.

Now part (i) of Lemma 9 gives that m′
l | q. But q is prime, and so m′

l = q. Hence,
q ∈ Q′ as required. �

7. Proof of the Reduction Theorem

In this section we finally prove the Reduction Theorem in its full strength. We
continue with the notation of the previous section; in particular ξl is given by (8).
For l ∈ S1 we define

ζl =

{
2ξl + 1 if l ∈ S′1,
2ξl if l /∈ S′1.

Let
A =

∏
l∈S1

lζl .

We are now ready to state and prove the following totally explicit version of the
Reduction Theorem.

Lemma 11. Let Q be as in (11) and A be as above. Suppose that the ni satisfy (1),
and let q be the largest prime divisor of n1 · · ·nm. Then either q ∈ Q or q is odd
and

(13) Uq = ±A(q−1)/2zp

for some z ∈ Z+.

Proof. Suppose that q /∈ Q. Lemma 10 tells us that q is odd and U ′
q = εzp for some

ε ∈ S′1 and z ∈ Z+. Moreover, we know that Uq = gq−1U ′
q with g given by (9). To

prove the Lemma it is sufficient to show, for l ∈ S1 that

ordl(U ′
q) =

{
(q − 1)/2, if l ∈ S′1.
0, if l /∈ S′1.

Suppose first that l ∈ S′1; in other words l | r′ and l | s′. Pondering the definitions
(8) and (9) we convince ourselves that l || s′. A straightforward induction enables
us to deduce that

ordl(U ′
n) =

n− 1
2

if n is odd, ordl(U ′
n) ≥ n

2
if n is even.
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This establishes the result we want if l ∈ S′1.
Suppose finally that l /∈ S′1. We would like to show that ordl(U ′

q) = 0; to this
end we suppose that l | U ′

q and deduce a contradiction. Now from l /∈ S′ and
l ∈ S1 ⊂ S ⊂ S ∪ T it is easy to deduce, as in the proof of Lemma 10, that q ∈ Q.
This gives the desired contradiction and completes the proof. �

8. Proof of the Finiteness Theorem

We now come to prove the Finiteness Theorem. Suppose that ni satisfy (1).
Using the Reduction Theorem and Theorem 6, we see that there exists a finite
computable set R containing all of the prime divisors q of n1, . . . , nm. Now the
Finiteness Theorem follows immediately from Theorem 6 and the following lemma.

Lemma 12. Let R be a set of primes containing all the prime divisors of n1,. . . ,
nm. If k ≥ 1 divides at least one of the ni, then

Uk = ζwp

for some ζ ∈ R ∪ S ∪ T and w ∈ Z+. In other words, Uk is a perfect power up to
R ∪ S ∪ T .

Proof. We prove the lemma by contradiction. Suppose that k > 1 is the smallest
positive integer dividing one of the ni’s for which the lemma fails. Thus, there is
some prime l /∈ R ∪ S ∪ T such that lt || Uk and p - t.

As l /∈ S, we see that l - ∆. From Lemma 8, we know that l - s. Now part (i) of
Lemma 9 tells us that ml | k. Moreover, l - k since l /∈ R and all the prime divisors
of k (which are among the prime divisors of some ni) belong to R. Now parts (ii)
and (iii) of Lemma 9 give lt || Uml

.
There are two possibilities. The first is that ml < k. By the minimality of k, we

see that p | t giving a contradiction.
The second possibility is that ml = k. Rearrange the ni so that ml divides n1,

. . . , nm′ and does not divide the others. By Lemma 9 again, lt || Uni
for i = 1, . . . ,

m′, and l - Uni for i > m′. From equation (1), we see that p | tm′, where we know
that 1 ≤ m′ ≤ m < p. Hence p | t, again giving a contradiction. �

9. The Distillation Algorithm

In this section, we study the practical resolution of equation (1). The first step
is to solve the equation

(14) Uq = ±A(q−1)/2zp, p prime, q odd prime, z ∈ Z+.

Until recently, solving such an equation has been a formidable task in most cases,
but is now relatively practical (see [3] as well as [8], [9] and the remarks in Sec-
tion 12). The method of [3] combines the classical approach via estimates for linear
forms in two or three logarithms (to bound the exponent p), with the modular
approach via Frey curves and Ribet’s level-lowering theorem. This method is not
an algorithm in the strict sense of the word, but is a practical and reliable strategy
that should solve this equation.

We suppose equation (14) has been solved. We now explain an algorithm—
which we call the Distillation Algorithm—that enables us to write down a finite
set containing all the possibilities for the indices ni appearing in equation (1). For
readability we will not write up the algorithm in a very formal way.
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Step 1: Let
Q = {q : q is a solution to (14)} ∪Q,

where Q is as in Section 6. By Lemma 11, the greatest prime divisor of n1 · · ·nm

belongs to Q. Let q∗ = max(Q) and

R = {q : q is prime and q ≤ q∗} .

Thus, all the prime divisors of n1, . . . , nm belong to R.

Step 2: Our second step is to refine R using Lemma 12; our objective is to replace
R by a subset that still contains all the possible prime divisors of the ni. We loop
through the primes q ∈ R and eliminate all those such that Uq is not a perfect
power up to R ∪ S ∪ T . We repeat this until we have looped through all of the
elements of R without eliminating a single element. Now write

R = {q1, . . . , qt} .

Step 3: Our third step is to determine, for each qj ∈ R, an upper bound for the
power of qj dividing the ni. Fix q in R and let a ≥ 1 be the smallest value such
that Uqa is not a power up to R∪ S ∪ T . By Lemma 12, we know that qa does not
divide any of the ni. Write aj for the a that corresponds to qj , and let bj = aj − 1.
Thus, the exponents of qj in the factorisations of the ni are at most bj .

Step 4: We now let N be the set of integers n such that

• n is of the form
∏

q
xj

j with 0 ≤ xj ≤ bj .
• Uk is a perfect power up to R ∪ S ∪ T for all positive divisors k of n.

It follows from the above and Lemma 12 again that the ni belong to this finite set
N .

Step 5: We refine N in a way that it will still contain all of the possible ni. We
loop through n ∈ N . Suppose there is some prime l ∈ R ∪ S\T such that l || Un,
but l - Un′ for all n′ 6= n in N . We deduce from (1) that ni 6= n for all i (here
we need again the hypothesis m < p), and so n can be eliminated from the set of
possible indices N . We repeat this until we have looped through all of the elements
of N once without eliminating any elements.

The set N produced by Step 5 is algorithm’s output.

10. Powers from Products of Unidigital Numbers

In this section, we prove Theorem 5 concerning unidigital numbers. We leave
the proofs of Theorems 3 and 4 until the next section.

Proof of Theorem 5. Let Un = (10n−1)/(10−1). A unidigital number is a positive
integer of the form dUn for some n ≥ 1 and d = 1, 2, . . . , 9. Thus, we want to solve
the equation

d1d2UnUm = xp, d1, d2 = 1, 2, . . . , 9, p is prime.

We will show that m = n = 1 if p > 2 and m = n if p = 2, which immediately gives
the theorem.

It is clear that
UnUm = 2a3b5c7dyp.

Now 2, 5 cannot divide the product UnUm. Hence, we reduce to

UnUm = 3b7dyp.
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Suppose first that p > 2. We note here that the two sequences {Un} and {U ′
n}

are identical. In the usual notation, r = 11, s = −10, ∆ = 81, S = {2, 3},
S1 = ∅, S2 = {3} and T = {3, 7}. Write q for the greatest prime dividing mn.
From Lemma 11, we have that q ∈ Q or Uq = zp. But the equation Uq = zp has
no solutions (see [4]). Hence, q ∈ Q. Now we apply the recipes in Section 6 to
compute Q′ and Q. We find that Q′ = {3}; for this, we need m7 = 6 which is not
a prime. Furthermore, U2 = 11 and U3 = 3 × 37 which are not perfect powers up
to S ∪ T , and hence Q = ∅. We deduce that the largest prime divisor of mn does
not exist. In other words, m = n = 1 as required.

We now turn our attention to the case p = 2. In this case,

(15) UmUn = 3b7dy2.

We assume that b, d ∈ {0, 1}.

We first treat the case b = d = 0 and show that m = n. Writing D = gcd(m,n),
we get that both Um/UD and Un/UD are squares. With x = 10D, these equations
show that (xm/D − 1)/(x − 1) and (xn/D − 1)/(x − 1) are perfect squares. The
equation

xt − 1
x− 1

= y2

was solved by Ljunggren (see [13]); its only solutions with x > 1 and t > 2 are
given by (x, t) = (3, 5), (7, 4). Hence, m/D and n/D are 1 or 2, which shows that
m = n or m = 2n. In the latter case, we get that U2n/Un = 10n + 1 is a perfect
square, which is impossible modulo 3. Hence, m = n as desired.

We now assume that b, d ∈ {0, 1} are not both zero, and deduce a contradiction.
Consider equation (15) modulo 5. Clearly, UmUn ≡ 1 (mod 5) and y2 ≡ ±1
(mod 5). We deduce that b = d = 1. Furthermore, Un is 1, 3, and −1 modulo 8
according to whether n = 1, n = 2, and n ≥ 3, respectively. But 3b7dy2 = 21y2 ≡ 5
(mod 8). Assuming without loss of generality that m ≤ n, we see that m = 2 and
n ≥ 3. Since U2 = 11, we can rewrite equation (15) as

(16) Un = 3× 7× 11× y2
1 .

Let q be the largest prime factor of n. We may now apply Lemma 11 with S,
S1, S2 as before, and T = {3, 7, 11}. We deduce that Uq = z2 or q ∈ Q. Again
Uq = z2 has no solutions by Ljunggren’s result. Moreover, Q′ = {2, 3} (for this
we need m11 = 2) and Q = {2}. Hence, the only possible prime divisor of n is 2.
Moreover, U4 = 11× 101, so Lemma 12 implies that 4 - n. Hence, n = 1 or 2. This
contradicts (16). �

11. Powers from Products of Fibonacci Numbers

We now come to the proofs of Theorems 3 and 4. We give the proof of Theorem 3
first because it is simpler and the reader will be able to verify all the calculations
without the need for any programming.

Proof of Theorem 3. Here, r = s = 1, ∆ = 5, S = {2, 5}, S1 = ∅, S2 = {5} and
T = ∅.

Now note that we have m2 = 3. In the notation of Section 6, we see that
Q′ = {3, 5} and Q = {2, 3, 5}. As indicated in the introduction, the only solutions
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to Fn = yp and given by n = 0, 1, 2, 6, 12. We now go through the steps of the
Distillation Algorithm.

Step 1: This step tells us the greatest prime divisor q of the ni belongs to the set
Q = {2, 3, 5}, and so all the divisors of the ni belong to the set R = {2, 3, 5}.

Step 2: This step does not change R which is not surprising as R is already very
small.

Step 3: Now note the prime factorisations

F8 = 3× 7, F9 = 2× 17, F25 = 5× 3001.

Thus, the exponents of 2, 3, 5 in the factorisations of the ni are bounded respectively
by 2, 1, 1.

Step 4: We deduce that the ni belong to the set

{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60} .

We eliminate from this set all the elements n such that there is some k | n for
which Fk is not a perfect power up to R ∪ S ∪ T = {2, 3, 5}. Thus, since F10 = 55
and F15 = 610, we can eliminate 10, 15, 20, 30, 60. It turns out that we cannot
eliminate any other n in this step. Hence, the ni belong to N = {1, 2, 3, 4, 5, 6, 12}.

Step 5 Applying the last step of the algorithm eliminates 5 from N . This is because
F5 = 5 and 5 - Fn for n 6= 5 in the set N . Thus the ni belong to N = {1, 2, 3, 4, 6, 12}
as required in the first part of the theorem.

To prove the last assertion of the theorem, it only remains to solve the equation
FmFn = y2. This has been done by Cohn in [10], and independently but much later
by Ribenboim in [16, Proposition 2]. They showed that either m, n ∈ {1, 2, 3, 6, 12},
or m = n. �

We point out that the set of possible indices {1, 2, 3, 4, 6, 12} in Theorem 3 cannot
be reduced further. Indeed, F1 = F2 = 1. Thus, equation (3) reduces to

(17) F3
a · F4

b · F6
c · F12

d = yp

where a, b, c, d ≥ 0 satisfy a+b+c+d < p because of the condition m < p. We want
to show that there is, for large enough p, a solution with a, b, c, d > 0; this certainly
shows that the set of possible indices cannot be reduced further. By considering
the prime-power factorisation, we deduce that equation (17) is equivalent to

(18) a + 3c + 4d ≡ b + 2d ≡ 0 (mod p).

Thus, a quadruple of integers (a, b, c, d) is a solution to equation (17) if and only
if it belongs to the lattice (18). The conditions a + b + c + d < p and a, b, c, d > 0
are equivalent to saying that the quadruple belongs to the convex set

(19)
{
(δ1, . . . , δ4) ∈ R4 : δ1, . . . , δ4 > 0, δ1 + · · ·+ δ4 < p

}
.

The convex set has volume p4/24, whilst the lattice has determinant p2. Hence,
the expected number of solutions is roughly p2/24.

We finally turn to the proof of Theorem 4.
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Proof of Theorem 4. We programmed our Distillation Algorithm using pari/gp.
The theorem follows from applying our algorithm to the Fibonacci sequence with
T being the set of the first hundred primes: T = {2, 3, 5, . . . , 541}. We give only
the output at each stage of the algorithm. Before applying the algorithm we have

Q′ = {3, 5, 7, 11, 13, 19, 37, 59, 67, 79, 97, 139, 157, 199, 229} ,

and
Q = {2, 3, 5, 7, 11, 13, 19} .

Step 1: Q = {2, 3, 5, 7, 11, 13, 19} and R = {2, 3, 5, 7, 11, 13, 17, 19}.
Step 2: R = {2, 3, 5, 7, 11, 13, 19}.
Step 3: The bounds for the exponents of the primes in the prime factorisations of
the ni are all 1 except for the exponents of 2 and 3 where these bounds are 4 and
3, respectively.

Steps 4 and 5: These steps both give

N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18,

19, 20, 21, 22, 24, 26, 27, 28, 30, 36, 42, 44} ,

as required in the statement of the theorem. �

12. Concluding Remarks

The essence of this paper is the Reduction Theorem. To be able to apply the
Reduction Theorem one needs to solve equations of the form (2). The papers [3],
[8] are primarily concerned with the equation Un = yp. The purpose in this section
is to convince the reader who is familiar with [3], [8] that the techniques of those
papers are applicable to (2).

An equation of the form (2) yields a linear form in logarithms and this can be
used to bound the exponent p. With current bounds for linear forms in logarithms
we know the following:

• If the linear form involves 4 or more logarithms then the bound obtained
for p will be hopelessly large and of no practical use in solving (2).

• If the linear form involves 3 logarithms then the bound for p will be quite
reasonable—say around 109.

• If the linear form involves 2 logarithms then the bound for p will be small—
say around 1000.

Since we want to bound p we may assume that p is odd. Equation (2) can be
rewritten as

(20)
αq − βq

α− β
= A(q−1)/2zp;

here we absorbed the ± into the zp. Let us assume that α and β are real numbers.
We deduce that

(21)
α

α− β

(
α2

A

)(q−1)/2

z−p − 1 = O(|z|−p).

This clearly results in a linear form in 3 logarithms, and so yields a reasonable
bound for p.



16 YANN BUGEAUD, FLORIAN LUCA, MAURICE MIGNOTTE, SAMIR SIKSEK

Now the modular approach should be used. In particular ‘the method of predict-
ing exponents’ [26] should, for large enough p, predict q modulo p. At this stage we
need the bound for p obtained from the linear form in 3 logarithms. This method
of predicting exponents should show that q ≡ q1, . . . , qt (mod p) for some finite list
of congruence classes q1, . . . , qt that does not depend on p. Assuming that q ≡ qi

(mod p) we can rewrite (21) as

Bi

(
Cki

i

z

)p

− 1 = O(|z|−p)

for a suitable algebraic constants Bi, Ci and integer ki. This now results in a linear
form in 2 logarithms which gives a very good bound for p.

Once these two steps are over and we have a very good bound for p the rest of
the techniques in [3], [8] should enable us to complete the resolution of (2).

When α and β are complex non-real numbers, we use estimates for linear forms
in 3 non-Archimedean logarithms to derive from (20) a reasonable upper bound
for p. Then, applying as above ‘the method of predicting exponents’ enables us to
use estimates for linear forms in 2 non-Archimedean logarithms, thus to get a very
good bound for p.

We finally make a remark about the condition m < p in Theorems 1 and 2.
The situation is much more complicated without this condition, since otherwise
equation (1) has obviously infinitely many solutions (recall that the indices ni are
not assumed to be distinct). We present a conjecture that allows us to predict that
apart from finitely many solutions, the solutions are essentially diagonal.

If n is a positive integer then a primitive divisor of Un is a prime l dividing Un

but not dividing Um for all 1 ≤ m < n. A celebrated theorem of Bilu, Hanrot
and Voutier [1] states that if Un is a non-degenerate Lucas sequence and n > 30
then Un has a primitive divisor (under the additional assumption that associated
parameters r, s are coprime). We shall call l a primary divisor of Un if it is a
primitive divisor and l || Un.

Conjecture 7. Suppose that {Un}n≥0 is a non-degenerate Lucas sequence. There
exists a constant C such that for all n ≥ C the Lucas term Un has a primary
divisor.

The above conjecture is based on extensive computational experience with Lucas
sequences. It appears to be hopelessly out-of-reach, but it does allow us to deduce
the following.

Theorem 8. Assume that Conjecture 7 holds. Suppose that {Un}n≥0 is a non-
degenerate Lucas sequence and T is a finite set of primes. Let C be the constant
appearing in the conjecture above, and let

C ′ = max(C,max
q∈T

(mq + 1)),

where as usual mq denotes the rank of the first appearance of the prime q for the
sequence {Un}. Suppose that

m∏
i=1

Uni
= µyp, µ ∈ T , m, y ∈ Z+, p prime, n1 ≥ n2 ≥ · · · ≥ nm ≥ 1.
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Then there is an integer k ≥ 0 such that

nkp+1, . . . , nm < C ′

and

n1 = n2 = . . . = np, np+1 = . . . = n2p, . . . n(k−1)p+1 = . . . = nkp.

Proof. If n1 < C ′ then there is nothing to prove. Thus suppose that n1 ≥ C ′.
By the conjecture above, there is a prime l that is a primitive divisor of Un1 and
l || Un1 . Moreover, since n1 > mq for q ∈ T we see that l /∈ T . Thus the exponent to
which l divides the term µyp is at least p. Since l || Un1 and l - Un for n < n1 we see
that n1 = n2 = . . . = np. We now divide both sides of the equation

∏
ni

Uni
= µyp

with Up
n1

and repeat the argument. �
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