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Abstract. We present an algorithm for computing an upper bound for the

difference of the logarithmic height and the canonical height on elliptic curves.
Moreover a new method for performing the infinite descent on elliptic curves

is given, using ideas from the geometry of numbers. These algorithms are

practical and are demonstrated by a few examples.

1. Introduction

Recently there has been much interest in the computation of Mordell-Weil groups
of elliptic curves, both for specific families of curves (such as in [Brem], [Brem, Ca],
[Str, Top]), and in the development of new algorithms for computing the Mordell-
Weil group (see for example [Ge, Zi]). Not only is this an interesting problem in
itself, but is also an essential ingredient for the popular algorithm for calculating
the integral points on elliptic curves using elliptic logarithms (see any of [GPZ],
[Smart], [Sm, Ste], [Str, Tz]).

Let E be an elliptic curve defined over a number field K. The computation of
the Mordell-Weil group naturally falls into 2 parts:

(1) The 2-descent. Here, with some luck, a basis for E(K)/2E(K) is computed.
(2) The infinite descent. This is the name given to the process by which given

a basis for E(K)/mE(K) for some m ≥ 2, we can obtain a basis for E(K).
Over the rationals, the best (unconditional) algorithm known to me for the 2-

descent is the one given in [Bi, SwD], and in [Cre] pages 68-76. This has recently
been (re-)implemented by J. Cremona as the program mwrank. For most curves of
reasonably small discriminant mwrank can calculate E(Q)/2E(Q) in a very short
time. In contrast to this, the method found in the literature for performing the
infinite descent usually takes longer, and is often impossible to carry out in practice.
Below we explain why this is so, and we present a new more efficient algorithm for
carrying out the infinite descent. Our algorithm is practical, and its practicality is
demonstrated by a few examples.

The standard method for infinite descent (see [Silv1] pages 739-742, or [Cre] pages
58-61) normally goes via Zagier’s Theorem, and explicit bounds on the difference
between the logarithmic and canonical heights of points on elliptic curves defined
over number fields (such as Silverman’s given below).
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We return to the generality of E being a curve over a number field K.

Theorem 1.1. (Zagier) Let B > 0 be such that

S =
{

P ∈ E(K) : ĥ(P ) ≤ B
}

(1)

contains a complete set of coset representatives for mE(K) in E(K). Then the set
S generates E(K).

Proof. See [Cre] p61 or [Silv1] p740. �

Theorem 1.2. 1 (Silverman) Let K be a number field and let E/K be given by the
Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2)

whose coefficients are in the ring of integers of K. Let ∆ be the discriminant of the
equation (2) and let j be the j-invariant of E. Further let

b2 = a2
1 + 4a2 and 2∗ =

{
2 if b2 6= 0,
1 if b2 = 0.

Define “height of E” (really of the Weierstrass equation (2)) by

µ(E) =
1
12

h(∆) +
1
12

h∞(j) +
1
2
h∞(b2/12) +

1
2

log(2∗),

where, for t ∈ K,

h∞(t) =
1

[K : Q]

∑
υ∈M∞

K

nυ log(max(1, |t|v))

Then for all P ∈ E(K̄),

h(P )− ĥ(P ) ≤ 1
12

h(j) + 2µ(E) + 1.946.

Proof. See [Silv1]. �

Having obtained a set of generators for E(K)/mE(K) we can compute all the
coset representatives for E(K)/mE(K) and hence their canonical heights. If B is
an upper bound for these canonical heights then by Zagier’s Theorem 1.1 we get an
upper bound for the canonical heights of all the points of a set S (defined above)
which generates E(K). Combining this with Silverman’s result 1.2 we get an upper
bound B′ for the logarithmic heights of all the points of S. It follows that the set
S can be enumerated, provided of course that this upper bound is not too large.

Unhappily, as indicated above, practical experience suggests that the upper
bound B′ involved in this method is often too large. This can be for several reasons:

(1) It is possible that the Silverman estimate on the difference between the
logarithmic and canonical height is very large.

1Here it is appropriate to make 2 comments:

(1) We quoted only one half of Silverman’s Theorem which is given in [Silv2]. Silverman also gives a

lower bound for h− ĥ but this shall not concern us as it is not needed for the infinite descent.
(2) Silverman’s bounds for h(P )− ĥ(P ) hold for all points P on E defined over any extension of the

ground number field K. Our Theorem 2.1 gives a bound for h(P )− ĥ(P ) for all points P ∈ E(K).

Thus a bound derived by our method for points on an elliptic curve over a certain number field
will not always hold for points defined over extensions of that field.
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(2) It is possible that the canoncial heights of the generators of E(K)/mE(K)
are large.

(3) It is also possible, even though the generators of E(K)/mE(K) have small
canonical heights, that some of the coset representatives (particularly if the
rank is large) will have large heights.

We stress that the size of the search region for the point of S increases exponentially
with B′. To illustrate, if say K = Q, and if P = (X, Y ) ∈ S then we can write X =
x/z2 where x and z are in Z and satisfy |x| ≤ exp(B′) and |z| ≤ exp(B′/2). It follows
that the search region here is roughly proportional to exp(1.5B′). For a number
field K of degree n over the rationals, the search region is, very roughly, between
exp(1.5nB′) and exp(2nB′) in size. Hence small savings on B′, can translate into
big savings in the actual size of the search region.

We will adopt a different approach to the infinite descent:
(1) We will give an algorithm which will allow us, in most cases, to calculate a

sharper upper bound for the quantity h(P )− ĥ(P ).
(2) We will show how a basis of a submodule of the torsion-free part of E(K),

having full rank, can be enlarged efficiently to a basis for E(K).
The algorithm for infinite descent we will give uses both of these ingredients, and
involves searching much smaller regions than the above.

In computing our examples we have found Cremona’s programs 2 mwrank, and
findinf very useful. findinf is a program for searching for points on a given curve
up to a given logarithmic height. In the little programing we needed, we used the
popular package Pari/GP (see [Pari]). This has many functions for doing arithmetic
on elliptic curves, including elliptic logarithms, and canonical height computations.

2. The bound on the difference h(P )− ĥ(P )

2.1. Preliminaries. Let E be an elliptic curve given by the Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (3)

where a1, . . . , a6 are in the ring of integers OK of a number field K. In this
section we shall give an algorithm for obtaining an upper bound for the quantity
h(P )− ĥ(P ). This is based on the traditional method of estimating the difference
h(2P )− 4h(P ). Generally speaking, when this has been done in the past, it relied
on the use of elimination theory, which leads to poor upper bounds. The method
we shall give bypasses elimination theory using explicit calculations over some local
completions of K.

Apart from Silverman’s Theorem 1.2, there are other results which give bounds
on the quantity h(P ) − ĥ(P ), most notably in [Zimmer] and [Dem]. The reason
why we make specific comparisons only with Silverman’s theorem is that this is
currently the most widely used and quoted in the literature.

As our method is very different from Silverman’s method for obtaining his esti-
mate 1.2, we have no easy way of deciding a priori which should give the smaller
bound. We can only note that, in practice, we have found that our method gives
much smaller bounds most of the time, or exceptionally bounds which are slightly

2mwrank and findinf are available by anonymous ftp from euclid.exeter.ac.uk (144.173.8.2) in

directory pub/cremona. There are executable binaries for both Sun (sparc) and Silicon Graphics
(Irix 4) machines.
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better. For example, a straightforward application of Silverman’s Theorem 1.2 for
the curve

Y 2 + Y = X3 − 7X + 6

gives
h(P )− ĥ(P ) ≤ 5.4.

In [BGZ] Buhler, Gross and Zagier derive that

h(P )− ĥ(P ) ≤ 0 for all P ∈ E(Q),

and we get this also by applying our Theorem 2.1. Needless to say, here our method
gave a much better bound than Silverman’s. In contrast to this, for the curve

Y 2 = X(X2 − p2)

where p is prime and > 2, Silverman’s theorem gives

h(P )− ĥ(P ) ≤ log(p) + 4.505

and our Theorem 2.1 gives

h(P )− ĥ(P ) ≤ log(p) + 0.347 for all P ∈ E(Q).

Here for small primes p our bound looks much better and for large p it looks roughly
the same as Silverman’s. However, even here, the extra work we had to do to get
our bound was worthwhile, since to search for all rational points on the curve of
canonical height ≤ B, the size of the search region if we apply our bound is roughly

1.682p1.5 exp(1.5B),

and if we apply Silverman’s bound it is roughly

860.488p1.5 exp(1.5B).

Accordingly, we believe that the small amount of work that goes into obtaining our
bound will usually be amply rewarded by the time saved through searching smaller
regions.

We employ some standard notation to do with number fields and elliptic curves.
Given a number field K we let MK be the set of all valuations on K. We write
M0

K and M∞
K for the sets of non-archimedean and archimedean valuations on K

respectively. For an elliptic curve E given by a Weierstrass equation of the form (3)
we define some associated constants (see [Silv2] page 46):

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,
b6 = a2

3 + 4a6,
b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4,
∆ = −b2

2b8 − 8b3
4 − 27b2

6 + 9b2b4b6.

(4)

Let

f(X) = 4X3 + b2X
2 + 2b4X + b6

g(X) = X4 − b4X
2 − 2b6X − b8.

(5)

It will be seen that the polynomials f, g arise in the duplication formula for a
point on the curve E and a little study of these polynomials essentially gives us our
required bound for h(P )− ĥ(P ).
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As usual, we denote the residue field of a completion Kυ with respect to a non-
archimedean prime υ by kυ, and we denote the canonical map Kυ → kυ ∪ {∞} by
x → x̄. We let π be a prime element for υ (i.e. π ∈ Kυ such that υ(π) = 1).

Lemma 2.1. Suppose that υ is a non-archimedean valuation on K and P = (x, y) ∈
E(Kυ) is such that its reduction P̄ = (x̄, ȳ) ∈ E(kυ) is non-singular. Then

max {|f(x)|v, |g(x)|v} = max {1, |x|v}4 .

Proof. If |x|v > 1 then |f(x)|v ≤ |x|3v and |g(x)|v = |x|4v and in this case the
conclusion is obvious.

Hence we can suppose that |x|v ≤ 1. Now we are required to prove that

max {|f(x)|v, |g(x)|v} = 1

Hence it is enough to show that when f(x) ≡ 0 (mod π) and g(x) ≡ 0 (mod π)
then P̄ is singular on E(kυ).

By a change of variable over Kυ which is non-singular modulo π, we may suppose
that (x, y) = (0, 0). Now the condition for (0, 0) to be on the Weierstrass equation
is that a6 = 0. Moreover, since f(0) ≡ g(0) ≡ 0 (mod π) we get that b6 ≡ b8 ≡ 0
(mod π). Hence from the formulae for b6, b8 we get that a3 ≡ a4 ≡ 0 (mod π).
This is a sufficient condition for (0, 0) to be singular on E(kυ). �

Here is some more notation which we will find useful:

f ′(X ′) = X ′4f( 1
X′ )

g′(X ′) = X ′4g( 1
X′ ).

(6)

Further, for each υ ∈ MK , let

Dv =
{
X ∈ Kυ : |X|v ≤ 1 and f(X) ∈ Kυ

2
}

D′
v =

{
X ′ ∈ Kυ : |X ′|v ≤ 1 and if X ′ 6= 0 then f

(
1

X ′

)
∈ Kυ

2

}
.

Lemma 2.2. Define constants dv, d′v by
(1) dv = infX∈Dv

max {|f(X)|v, |g(X)|v},
(2) d′v = infX′∈D′

v
max {|f ′(X ′)|v, |g′(X ′)|v}.

Then, dv, d′v are non-zero.

Proof. We begin by noting that the sets Dv, D′
v, are compact subsets of Kυ (with

respect to the υ-adic topology), and hence the infima dv, d′v must be attained. If
say dv was zero then there would exist X1 ∈ Dv such that f(X1) = g(X1) = 0.
However, from [Silv3] p347 we have that

Resultant (f, g) = Resultant (f ′, g′) = ∆2

where ∆ is the discriminant of the elliptic curve E. Accordingly, as this cannot be
zero, dv 6= 0. Similarly d′v 6= 0.

�

If E is minimal at some non-archimedean valuation υ then we define

cυ = [E(Kυ) : E0(Kυ)].

i.e. cυ is the Tamagawa index at υ.
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Lemma 2.3. For any valuation υ on K, let

ευ
−1 = inf

(X,Y )∈E(Kυ)

max(|f(X)|v, |g(X)|v)
max(1, |X|v)4

(7)

Then
(1) ευ exists. (i.e. the quantity on the right exists and is non-zero). Moreover

ευ
−1 = min(dυ, d′υ).

(2) ευ ≥ 1.
(3) If υ is non-archimedean, E is minimal at υ, and the local Tamagawa index

cυ = 1, then ευ = 1.
(4) If υ is non-archimedean, then ευ = dυ

−1 where dυ is as defined in Lem-
ma 2.2.

(5) If υ is non-archimedean, and

bυ(4∆)
2

c = n,

then ευ ≤ |π|−2n
v (where b c denotes the integer part of a number).

Proof. Suppose (X, Y ) ∈ E(Kυ). Then by a standard manipulation of the Weier-
strass equation (3) we get

(2Y + a1X + a3)2 = f(X) (8)

Hence, if |X|v ≤ 1 then X ∈ Dυ and

max(|f(X)|v, |g(X)|v)
max(1, |X|v)4

= max(|f(X)|v, |g(X)|v).

If |X|v ≥ 1 then X ′ = X−1 ∈ D′
υ and

max(|f(X)|v, |g(X)|v)
max(1, |X|v)4

= max(|f ′(X ′)|v, |g′(X ′)|v).

Hence it is clear that the quantity on the right of (7) exists and is equal to
min(dυ, d′υ), and so is non-zero (by Lemma 2.2). This proves the first part of
the above.

For the second part we note that we may take (X, Y ) ∈ E(Kυ) to be arbitrarily
close to 0. Hence X is unbounded with respect to the metric | |v and so

max(|f(X)|v, |g(X)|v)
max(1, |X|v)4

is arbitarily close to 1. It follows that ευ
−1 ≤ 1, and hence that ευ ≥ 1, as required

for part 2.
Part 3 is clear from Lemma 2.1.
For part 4 we note that if υ is non-archimedean and |X|v > 1 then by the proof

of Lemma 2.1,
max(|f(X)|v, |g(X)|v)

max(1, |X|v)4
= 1,

and if |X|v ≤ 1 then
max(|f(X)|v, |g(X)|v)

max(1, |X|v)4
≤ 1,

so by the definition of ευ we get

ευ
−1 ≤ inf

(X,Y )∈E(Kυ), |X|v≤1
max(|f(X)|v, |g(X)|v)
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which immediately gives part 4.
Let us now prove part 5. Let n be as defined in the Lemma. Suppose that

inf
X∈Dυ

max(|f(X)|v, |g(X)|v) ≤ |π|2n+1
v

and it is sufficient to derive a contradiction. If this was the case then there would
exist (X, Y ) ∈ E(Kυ), with

f(X) ≡ g(X) ≡ 0 (mod π2n+1).

But from equation (8) we must deduce that f(X) ≡ 0 (mod π2n+2). We now invoke
the following identity:

4g(X) = (6X2 + b2X + b4)2 − (8X + b2)f(X). (9)

This is easily verified. It follows that (6X2 + b2X + b4)2 ≡ 0 (mod π2n+2). Finally
we use the congruence

[48X2 + 8b2X + (−b2
2 + 32b4)](6X2 + b2X + b4)2 ≡ −4∆ (mod f(X))

(10)

in Z[X, a1, . . . , a6]. This is straightforward but rather tedious to verify (it is a
slightly more general form of the congruence on page 51 of [Ca1]). We can now
conclude that π2n+2 divides 4∆ as required. �

For a non-archimedean valuation υ, we let (as usual) E0(Kυ) be the set of points
on E(Kυ) with non-singular reduction modulo π. It is useful to define µυ = µυ(E)
as follows:

(1) if υ is archimedean, then µυ = 1
3 ,

(2) if υ is non-archimedean and E is not minimal at υ, then µυ = 1
3 ,

(3) if υ is non-archimedean and E is minimal at υ, then

µυ =


0 if [E(Kυ) : E0(Kυ)] = 1
1/4 if E(Kυ)/E0(Kυ) ∼= Z/2Z or (Z/2Z)2(
1− 1

4α

)
/3 if E(Kυ)/E0(Kυ) ∼= Z/2αZ where α ≥ 1

1/3 if [E(Kυ) : E0(Kυ)] is not a power of 2.

Here we recall that for non-archimedean υ at which E is minimal, the group
E(Kυ)/E0(Kυ) is either cyclic or is equal to (Z/2Z)2 (see for example Theorem
VII.6.1 on page 183 of [Silv2]). Hence the above definition for υ covers all the
possible cases.

We are now ready to state our main Theorem on the bound h− ĥ.

Theorem 2.1. Let MK be a complete set of inequivalent valuations on K. For
each υ ∈ MK , let nυ = [Kυ : Qυ]. Define a function

ε : MK × E(K) → R≥1 (11)

by

ε(υ, P ) =
{

1 if υ ∈ M0
K , E is minimal at υ, and P ∈ E0(Kυ)

ευ otherwise.
(12)
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Then for all P ∈ E(K) we have

h(P )− ĥ(P ) ≤ 1
[K:Q]

(∑
υ∈MK

µυnυ log(ε(υ, P ))
)

≤ 1
[K:Q]

(∑
υ∈MK

µυnυ log(ευ)
)

.

(13)

We note here that if υ is non-archimedean, E is minimal at υ, and the Tamagawa
index cυ = 1, then by the definition for µυ above, and Lemma 2.3 we have that
µυ = log(ε(υ, P )) = log(ευ) = 0. Hence only finitely many terms in the above sums
are non-zero.

Proof. We begin by noting that for all P ∈ E(K), υ ∈ MK ,

max(|f(X)|v, |g(X)|v) ≥ ε(υ, P )−1 max(1, |X|v)4 (14)

using the definition of ευ on page 6, and the definition of ε(υ, P ) above, and
Lemma 2.1.

Now if P = (X, Y ) ∈ E(K) then by the duplication formula (see [Silv2] p59)
the x-coordinate of 2P is g(X)/f(X). Hence using the product definition for naive
heights and Lemma 2.1 above we get

HK(2P ) =
∏

υ∈MK
max {|f(X)|v, |g(X)|v}nυ

≥
∏

υ∈MK

(
ε(υ, P )−1 max {1, |X|v}4

)nυ

=
(∏

υ∈MK
ε(υ, P )−nυ

)
HK(P )4.

(15)

Recall that

h(P ) =
1

[K : Q]
log(HK(P ))

and so

h(2P )− 4h(P ) ≥ 1
[K : Q]

 ∑
υ∈MK

nυ log(ε(υ, P )−1)

 .

Rearranging, we get

h(P ) ≤ 1
4
h(2P ) +

1
4[K : Q]

 ∑
υ∈MK

nυ log(ε(υ, P ))

 .

Using
ĥ(P ) = lim

n→∞
4−nh(2nP )

we get

h(P ) ≤ 1
[K : Q]

 ∑
υ∈MK

nυ

( ∞∑
n=1

1
4n

log(ε(υ, 2nP ))

)+ ĥ(P ).

However, from the definition of the function ε we find that

log(ε(υ, 2nP )) =
{

0 υ ∈ M0
K , E is minimal at υ, and 2nP ∈ E0(Kυ),

log(ευ) otherwise.
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It is now an easy matter to show that for all υ ∈ MK ,
∞∑

n=1

1
4n

log(ε(υ, 2nP )) ≤ µυ log(ε(υ, P ))

where µυis as defined above. This completes the proof. �

It is apparent from our Theorem above that to get an upper bound on h− ĥ, all
that remains is to calculate the values ευ at the finitely many valuations for which
µυ is not zero: recall these are the cases when either υ is archimedean (i.e. where
Kυ = R or C), or where υ is non-archimedean but E is not minimal at υ, or it is
minimal but the Tamagawa index cυ 6= 1.

We give separate algorithms for calculating ευ = min(dυ, d′υ)−1 for three different
cases:

• Kυ = R
• Kυ = C
• υ is non-archimedean.

2.2. Kυ = R. Suppose that Kυ = R. Note that there exists σ ∈ Gal(K/Q) such
that Kσ ⊂ R and for all x ∈ K, |x|v = |xσ| where | | is the ordinary absolute value.
Hence, by replacing f, g, f ′, g′ by fσ, gσ, f ′

σ
, g′

σ if necessary,we can assume
f, g, f ′, g′ are all real polynomials. Now the problem is reduced to finding

dv = inf
X∈Dv

max {|f(X)|v, |g(X)|v} ,

d′v = inf
X′∈D′

v

max {|f ′(X ′)|v, |g′(X ′)|v} ,

where
Dv = {X ∈ R : |X| ≤ 1 and f(X) ≥ 0}

and

D′
v =

{
X ′ ∈ R : |X ′| ≤ 1 and either X ′ = 0 or f(

1
X ′ ) ≥ 0

}
are clearly finite unions of intervals. Finally we use the following elementary lemma.

Lemma 2.4. If f, g are continuous real functions and I is an interval then the infi-
mum of the continuous function max {|f(X)|, |g(X)|} over the interval I is attained
at one of the following points

(i): an end point of I,
(ii): at one of the roots of f , g, f + g, f − g in the interval I,
(iii): at a turning point of one of the functions f , g.

Proof. We simply note that at any point in I not listed in (i) or (ii), the function
max {|f(X)|, |g(X)|} is equal to one of ±f, ±g and its infimum must be a local
supremum or infimum of f , or g. �

Hence, to calculate dv, we write Dv as a union of intervals (I) and calculate the infi-
mum of max {|f(X)|, |g(X)|} over each interval separately using the above Lemma,
and then dv will be the minimum of these (finitely many) infima. Similarly we
calculate d′υ, and then ευ = min(dυ, d′υ)−1.
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2.3. Kυ = C. Suppose that Kυ = C. In the same way as the real case, we can if
necessary replace f, g, f ′, g′ by appropriate conjugates so that

dv = inf
X∈Dv

max {|f(X)|v, |g(X)|v} ,

d′v = inf
X′∈D′

v

max {|f ′(X ′)|v, |g′(X ′)|v} ,

where Dv = D′
v = D = {z ∈ C : |z| ≤ 1} is the closed unit disc. We make use of

the following Lemma.

Lemma 2.5. let f and g be as above. Then the continuous function h : C → R>0

defined by
h(z) = max {|f(z)|, |g(z)|}

attains its infimum over D at a point z0 satisfying either
(1) |z0| = 1 (i.e. it is on the boundary of D), or
(2) |f(z0)| = |g(z0)|.

Proof. For each ρ ∈ C there are, counting multiplicities, 4 solutions to the equation
f(X) = ρg(X). In fact by Cardano’s formulae, there exist 4 functions φ1, . . . , φ4 :
C → C such that φ1(ρ), . . . , φ4(ρ) are solutions to f(X) = ρg(X).

Let
S = {ρ ∈ C : |ρ| = 1} .

It follows that each φi(S) is a path in C. We note that for all z ∈ C, |f(z)| = |g(z)|
if and only if there exist ρ ∈ S such that f(z) = ρg(z) and hence if and only if
z ∈ φi(S) for some i.

Now the paths φ1(S), . . . , φ4(S) divide the unit disc D into finitely many con-
nected regions U1, . . . , Un. Consider a region Uj ; denote the interior of Uj by int(Uj)
and its closure by U j . We note that the intersection of int(Uj) and φi(S) is empty
for i = 1, . . . , 4. Hence, by the connectedness of Uj , we get that either |f | > |g| or
|g| > |f | on all of int(Uj). Suppose, without loss of generality, that |f | > |g| on all
of int(Uj). Then h(z) = |f(z)| for all z ∈ U j . It is easy to see that f is never zero on
U j : if f is zero at some point of U j , then g is also zero at that point, contradicting
Lemma 2.2. Let w(z) = 1

f(z) . Then w is holomorphic on int(Uj) and continuous
on U j and so by the Maximum Modulus Theorem of Complex Analysis (see [Pr]
p76), it attains its maximum modulus over U j on the boundary U j\int(Uj). Hence
h(z) = |f(z)| attains its infimum over U j on the boundary U j\int(Uj). But each of
these boundaries is a subset of S ∪φ1(S)∪ . . .∪φ4(S). Since the U j cover D we get
that h attains its infimum over D on S ∪φ1(S)∪ . . .∪φ4(S). This is the statement
of the theorem. �

It is plain that the Lemma is true for f ′, g′, instead of f, g. Now it is necessary
to estimate inf {|f |, |g|} over the boundary S, and over the sections of the paths
φi(S). We will use the following naive method. Fix some n ≥ 2 (this should be
roughly 1 more than the number of significant digits we want to determine dυ to).
Let θj = 10−nj for j = 1, . . . , 10n. For each θj we solve (numerically) the equation

f(X) = e2πθj g(X),

and let

κj = min
{
max(|f(e2πθj )|, |g(e2πθj )|)

}
∪
{
|f(X)| : X ∈ D and f(X) = e2πθj g(X)

}
.
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Finally, we take dυ = min(κj). Similarly, we estimate d′υ, and take ευ = min(dυ, d′υ)−1.
Of course, this method is crude, and great improvements must be possible, but we
will not do this.

2.4. υ is Non-Archimedean. In this section we want to calculate

ευ
−1 = inf

(X,Y )∈E(Kυ)

max(|f(X)|v, |g(X)|v)
max(1, |X|v)4

for non-archimedean υ. We note by Lemma 2.1, that if the reduction of the curve
E(kυ) is non-singular then ευ = 1. Hence, we can assume that E has bad reduction
at υ, and calculate the infimum over the points of E(Kυ) which have singular
reduction modulo υ. To do this we define the following sequence of sets:

We define Ui for i = 1, 2, . . . , to be the set of all X (mod π2i) satisfying
(1) f(X) ≡ 0 (mod π2i),
(2) g(X) ≡ 0 (mod π2i−1), and
(3) there exists X0 ∈ Kυ such that X ≡ X0 (mod π2i) and f(X0) ∈ Kυ

2.
And we define Vi for i = 1, 2, . . . , to be the set of all X (mod π2i) satisfying
(1) f(X) ≡ g(X) ≡ 0 (mod π2i),
(2) there exists X0 ∈ Kυ such that X ≡ X0 (mod π2i) and f(X0) ∈ Kυ

2.

Lemma 2.6. (1) Suppose υ(2) = 0. If i ≥ 1 and Ui 6= ∅, then Vi = Ui and
π2i | ∆.

(2) Suppose υ(2) = e > 0. If Ui 6= ∅ or Vi 6= ∅, then π2i | 4∆.

Proof. We recall the identity and the congruence we used in the proof of Lemma 2.3
(on page 7)

4g(X) = (6X2 + b2X + b4)2 − (8X + b2)f(X). (16)

[48X2 + 8b2X + (−b2
2 + 32b4)](6X2 + b2X + b4)2 ≡ −4∆ (mod f(X)).

(17)

It follows from the first that if υ(2) = 0, and X ∈ Ui, then

(6X2 + b2X + b4)2 ≡ 0 (mod π2i)

and so π2i | g(X) and so X ∈ Vi. Further, by the congruence, π2i | ∆, and this
completes the proof of the first part. The proof of the second part is similar. �

Corollary 2.1. If υ(2) = 0 and U1 = ∅ then ευ = 1. If Uj 6= ∅ and Uj+1 = ∅ then
ευ = |π|v−2j.

Hence if υ(2) = 0 then we compute (Ui) explicitly for i = 1, 2, . . . until we reach
the empty set. Then the value of ευ is given by the above corollary. Here in
calculating the (Ui), it is needed to be able to test, given X (mod π2i), if there
exists X0 ∈ Kυ such that X ≡ X0 (mod π2i) and f(X0) ∈ Kυ

2. For this we use a
suitable generalization of the algorithm in Lemmas 6 and 7 of [Bi, SwD]. This is
given in [Sik].

Corollary 2.2. Suppose υ(2) 6= 0
(1) If U1 = ∅ then ευ = 1.
(2) If Uj 6= ∅ and Vj = ∅ then ευ = |π|v−(2j−1).
(3) If Vj 6= ∅ and Uj+1 = ∅ then ευ = |π|v−2j.
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Hence if υ(2) 6= 0, then we compute (Uj) and (Vj) explicitly until one of them is
empty. Then we compute ευ from the above corollary.

2.5. The Height Modulo Torsion. As will be seen in the examples, curves where
the bound obtained by Theorem 2.1 is small tend to be those where the Tamagawa
indices are trivial at the larger primes which divide the discriminant. This is often
not the case where the torsion group is non-trivial. However the following Theorem
will show us how to exploit the torsion group in order to reduce the bound obtained.

Theorem 2.2. Under the notation and hypotheses of Theorem 2.1, let υ1, . . . , υn be
the (finitely many) valuations in MK where the quantities µυ log(ευ) are non-zero.
Suppose (for some m ≤ n) that υ1, . . . , υm are non-archimedean valuations such
that E is minimal at each of them, and there exists a subgroup H ≤ Tor(E(K))
such that H surjects onto E(Kυi)/E0(Kυi) (via the natural map) for 1 ≤ i ≤ m.
Then for each P ∈ E(K), there exists T ∈ H such that

h(P + T )− ĥ(P ) ≤ 1
[K:Q]

(
|H|−1
|H|

)
(
∑m

i=1 µυnυ log(ευ))

+ 1
[K:Q]

(∑n
i=m+1 µυnυ log(ευ)

)
.

(18)

Proof. Let
H = {T1, . . . , Tk} .

Given any P ∈ E(K), and 1 ≤ i ≤ m we must have that exactly one of P + Tj has
good redution at υi. Hence, using Theorem 2.1, we get that∑k

j=1 h(P + Tj)− ĥ(P ) =
∑k

j=1 h(P + Tj)− ĥ(P + Tj)

≤ 1
[K:Q]

(∑n
i=1 µυi

nυi

∑k
j=1 log(ε(υi, P + Tj))

)
≤ k−1

[K:Q] (
∑m

i=1 µυi
nυi

ευi
) + k

[K:Q]

(∑n
i=m+1 µυi

nυi
ευi

)
(19)

Hence, for one of the Tj we must have that

k(h(P + Tj)− ĥ(P )) ≤ k − 1
[K : Q]

(
m∑

i=1

µυinυiευi

)
+

k

[K : Q]

(
n∑

i=m+1

µυinυiευi

)
which gives us the statement of the Theorem. �

2.6. Examples.

Example 2.1.

E : Y 2 = X3 − 73705X − 7526231 (20)

We find that the equation is minimal and that its discriminant is

∆ = 1155136043932048 = 24 × 199× 362793983647

as a product of prime factors. Hence the Tamagawa indices will be 1, except possibly
at 2, and so from the definition on page 7, all the µp = 0 except possibly for p = 2,
or p = ∞. Using Pari/GP we find that the Tamagawa index at 2 is 3. Hence
µ2 = µ∞ = 1

3 . To use Theorem 2.1 it remains to calculate ε2 and ε∞.
We find that

f = 4x3 − 294820x− 30104924 = 4(x3 − 73705x− 7526231)
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and
g = x4 + 147410x2 + 60209848x + 5432427025.

Now if g ≡ 0 (mod 2) then x is odd. But clearly, if x is odd then |f |2 = 1/4, and
|g|2 ≤ 1/4. Moreover, (−137,−1) ∈ E(Q) ⊆ E(Q2) and |f(−137)| = |g(−137)| =
1/4. Hence ε2 = 4.

In computing ε∞ we find
D∞ = ∅

and
D′
∞ = [−0.007299,−0.005691] ∪ [0, 0.003198].

Using Lemma 2.4 we find ε∞ = 2.939442. Applying Lemma 2.1 we get

h(P )− ĥ(P ) ≤ 0.8215047. (21)

for all P ∈ E(Q).
Here we note that Silverman’s Theorem 1.2 gives a bound

h(P )− ĥ(P ) ≤ 13.0242

Example 2.2. We begin with a curve of Mestre (quoted on page 234 of [Silv2])

E : Y 2 + Y = X3 − 6349808647X + 193146346911036 (22)

The discriminant of this curve is

∆ = 60259× 550469× 11241887× 722983930261

as a product of primes. Since it is not divisible by any squares we must have that
all constants µp = 0 for all finite primes p. By definition µ∞ = 1

3 and it remains to
determine ε∞. Hence we write D∞, and D′

∞ as unions of intervals as described on
page 9 :

D∞ = [−1, 1]
and

D′
∞ = [−1 , −1.08780× 10−5] ∪ [0 , 2.02512× 10−5] ∪ [2.35024× 10−5 , 1].

Hence we find that d∞ ≈ 4×1019 and d′∞ = 0.1289169. So ε∞ = 7.75693 and using
Theorem 2.1 we get

h(P )− ĥ(P ) ≤ µ∞ log(ε∞) = 0.68286 (23)

for all points P ∈ E(Q). We note here that Silverman’s theorem 1.2 gives an upper
bound of 21.7782 instead 0.68286.

It is apparent in the last two examples that the reason why the bound for h(P )−
ĥ(P ) is so small is that all or almost all of the Tamagawa indices were 1. Here is
an example where this is not the case:

Example 2.3. We compute the bound for the following curve which is given by
Thomas Kretschmer in [Kret] (page 633)

Y 2 + XY = X3 − 5818216808130X + 5401285759982786436 (24)

The model given here is minimal and the discriminant is

∆ = 26 × 38 × 72 × 112 × 292 × 312 × 412 × 472 × 277891391058913

We compute the following table
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p cp µp εp

2 6 1/3 26

3 8 21/64 38

7 2 1/4 72

11 2 1/4 112

29 2 1/4 292

31 2 1/4 312

41 2 1/4 412

47 2 1/4 472

∞ - 1/3 518.48024

Hence we get
h(P )− ĥ(P ) ≤ 15.70819.

In comparison Silverman’s bound is 27.5866.
Here we note that although our bound is much smaller than Silverman’s it is

still some what large for the purpose of the infinite descent (see the continuation
of this example on page 22). However we note that the reduction of the point of
order 2

Q = [1402932,−701466]

is singular at the primes 7, 11, 29, 31, 41, 47. Hence using Theorem 2.2 we get
that for all points P ∈ E(Q) there is a T ∈ {0, Q} such that

h(P + T )− ĥ(P ) ≤ 11.03099

3. The Canonical Height and Results from the Geometry of Numbers

It is worth recalling at the outset of this section, that in the case when the
elliptic curve E has rank 1 over the number field K, the infinite descent can be
performed in a much easier way than that described in the introduction. This
is well known: suppose P ∈ E(K) has infinite order and and let us say that P
generates E(K)/2E(K). Then, modulo torsion, P = nQ where n ≥ 1, and Q
generates the free part of E(K). Since P generates E(K)/2E(K), n cannot be
even and hence n = 1 or n ≥ 3. If n ≥ 3 then

ĥ(Q) ≤ 1
9
ĥ(P )

and so, if P is not the generator of the free part of E(K), we will find a generator
in a much smaller region than that given by Zagier’s Theorem 1.1.

In this section we develop a general technique for the infinite descent which
is analougous to the reduction of the bound for the rank 1 case given above. It
is here that we shall employ the language of lattices. Following [Ge, Zi] we define
Ê(K) = E(K)/Tor(E(K)), where Tor(E(K)) is the torsion of E(K). Suppose that
P1, . . . , Pr generate a sublattice of Ê(K) of full rank (for example P1, . . . , Pr could
be a basis of Ê(K)/mÊ(K) for some m ≥ 1). Suppose that this sublattice had
index n. If n = 1, then of course, P1, . . . , Pr is a basis for Ê(K), and we can easily
recover a basis for E(K). We will define the height pairing matrix of P1, . . . , Pr as
follows:

H(P1, . . . , Pr) = (< Pi, Pj >)i,j=1,... ,r (25)
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where for all P , Q in E(K)

< P, Q >=:
1
2
(ĥ(P + Q)− ĥ(P )− ĥ(Q)) (26)

Let R(P1, . . . , Pr) be the determinant of the height matrix H(P1, . . . , Pr). If R is
the regulator of E(K) it follows that

R =
1
n2

R(P1, . . . , Pr) (27)

We recall that the regulator is roughly of the same order of magnitude as the
product of the canonical heights of some basis for Ê(K) (See, for example, the
proof of Manin’s theorem in [Ge, Zi]). Hence if the index n was very large we
would expect (by virtue of (27)) there to be points of Ê(K) − {0} of very small
canonical height. We make this idea precise. Roughly it tells us that if there are
no points of Ê(K)−{0} of height smaller than some lower bound, then we can get
an upper bound for the index n and hence reduce the infinite descent to checking
the index of P1, . . . , Pr in Ê(K). We make use of the following Lemma from the
Geometry of Numbers.

Lemma 3.1. (Hermite, Minkowski and others) Suppose

f(x) =
r∑

i,j=1

fijxixj (28)

where (fij) is a symmetric positive definite matrix with determinant

D = det(fij) > 0. (29)

Then there exists a positive constant γr such that

inf
m 6=0 integral

f(m) ≤ γrD
1
r (30)

Moreover we can take
γ1
1 = 1, γ2

2 = 4
3 , γ3

3 = 2, γ4
4 = 4,

γ5
5 = 8, γ6

6 = 64
3 , γ7

7 = 64, γ8
8 = 28

(31)

and for r ≥ 9

γr =
(

4
π

)
Γ
(r

2
+ 1
) 2

r

(32)

Proof. The Lemma with constant γr =
(

4
3

) (r−1)
2 was originally due to Hermite.

The formula (30) with γr given for all r by (32) is the formula for the ‘first Minima’
in Minkowski’s Second Theorem (see [Ca2] p260, and [Sieg] p26 for the formula ).
The constants γ1, . . . , γ8 given above are, for 1 ≤ r ≤ 8, the smallest constants
which make the Lemma work (See [Ca3] p332).

I’m unaware if the smallest possible values of γr have been determined for any
r ≥ 9. �

Lemma 3.2. Let E be an elliptic curve defined over a number field K. Let R be
the regulator of E(K). If the rank r is ≥ 1 then there exists a point Q in E(K) of
infinite order such that

ĥ(Q) ≤ γrR
1
r (33)
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Proof. Suppose Q1, . . . , Qr is a basis for Ê(K). If Q =
∑r

i=1 miQi then

ĥ(Q) =
r∑

i,j=1

mimj < Qi, Qj > . (34)

Recall that the height pairing matrix H(Q1, . . . , Qr) = (< Qi, Qj >) is symmetric
positive definite, and its determinant is R, the regulator of E(K). It follows from
Lemma (30) that there exist an m 6= 0 integral such that

ĥ(Q) =

 r∑
i,j=1

mimj < Qi, Qj >

 ≤ γrR
1
r . (35)

Since Q1, . . . , Qr is a basis for Ê(K) and m 6= 0, Q must have infinite order, and
the Lemma now follows. �

We now combine the above with the observation (27) to deduce the following
theorem.

Theorem 3.1. Let E be an elliptic curve defined over a number field K. Suppose
that E(K) contains no point Q of infinite order with canonical height ĥ(Q) ≤ λ
where λ is some positive real number. Suppose that P1, . . . , Pr generate a sublattice
of Ê(K) of full rank r ≥ 1. Then the index n of the span of P1, . . . , Pr in Ê(K)
satisfies

n ≤ R(P1, . . . , Pr)
1
2

(γr

λ

) r
2

(36)

where R(P1, . . . , Pr) is the determinant of the height pairing matrix and

γ1
1 = 1, γ2

2 = 4
3 , γ3

3 = 2, γ4
4 = 4,

γ5
5 = 8, γ6

6 = 64
3 , γ7

7 = 64, γ8
8 = 28

(37)

and for r ≥ 9

γr =
(

4
π

)
Γ
(r

2
+ 1
) 2

r

(38)

Proof. By Lemma 3.2, if R is the regulator of E(K) then there exists Q in E(K)
of infinite order such that

ĥ(Q) ≤ γrR
1
r .

It follows that
λ ≤ γrR

1
r .

But R = 1
n2 R(P1, . . . , Pr). Hence

λr ≤ γr
rR(P1, . . . , Pr)

n2
.

Rearranging, we get the required inequality

n ≤ R(P1, . . . , Pr)
1
2

(γr

λ

) r
2

.

�
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4. A Sub-lattice Enlargement Procedure

Suppose we are given P1, . . . , Pr which is a basis for a sublattice of Ê(K) of full
rank. By the methods of the previous section, we can establish an upper bound for
n, the index of this sublattice in Ê(K). If n < 2, then it is clear that P1, . . . , Pr is
a basis for Ê(K) and the infinite descent is finished.

Suppose now that the method of the previous section gave us a bound n ≤ α
for some α ≥ 2. Here it is necessary to check, for each prime p ≤ α whether or
not the index n is divisible by p. Equivalently, we must determine if there exist
a1, . . . , ar ∈ Z, not all divisible by p. such that∑

aiPi = pQ (39)

for some Q ∈ Ê(K).
It is clear that in checking this we can assume that |ai| ≤ (p− 1)/2. This leaves

us with a finite number of equations of type (39) to solve. We explain how these
may be solved later. However, as these equations can be many, it is useful to start
with some sieving. In practice, we have found the sieving described below to very
effective.

4.1. Sieving. In the notation of above, given a prime p ≤ α, we let Pr+1, . . . , Pr+s

be a basis for Tor(E(K))/pTor(E(K)), where Tor(E(K)) is the torsion subgroup
of E(K) (and so typically s = 0). We let

Vp =

{
ā ∈ Fp

r+s : if a ∈ Zr+s and a ≡ ā (mod p) then

r+s∑
i=1

aiPi ∈ pE(K)

}
It is clear the Vp is an Fp-linear subspace of Fp

r+s and that the index n is divisible
by p if and only if Vp 6= {0}.

Suppose that υ ∈ MK is a prime such that:
(1) E has good reduction at υ,
(2) |E(kυ)| is divisible by p but not by p2.

Write |E(kυ)| = lp where p does not divide l.
We let π be a uniformizer at υ and compute P ′

i ≡ lPi (mod π). If P ′
i ≡ 0

(mod π) for i = 1, . . . , r + s, then the sieving modulo π will give us nothing and we
should start with another υ ∈ MK satisfying the two conditions above. However,
suppose, say that P ′

1 is not 0 (mod π). We note that the subgroup lE(kυ) of E(kυ)
is cyclic of order p, and contains P ′

1, . . . , P ′
r+s; in particular P ′

1 (mod π) generates
lE(kυ). By computing all the multiples of P ′

1 (mod π), we determine mi such that
P ′

i ≡ miP
′
1 (mod π). Hence, if (ā1, . . . , ār+s) ∈ Vp, we must have that∑

miāi = 0 (40)

in Fp. This gives us a relation that must be satisfied by the vectors in Vp. If we
were to compute r + s independent relations by this method, then Vp = {0}, and
the index would not be divisible by p.

At the very least, our hope is that by sieving modulo a few of these primes π,
we have reduced Vp to being in a much smaller subspace of Fp

r+s, and so we have
considerably reduced the number of equations of type (39) to be checked.

Our method of sieving has an obvious gap, which is to find υ ∈ MK , for which
|E(kυ)| is divisible by p but not p2. At least the second assumption is not always



18 SAMIR SIKSEK

attainable (for example if Tor(E(K)) had a subgroup of order p2). So we note that
the assumption that p2 does not divide |E(kυ)| can be easily circumvented after
determining the structure of the p-Sylow subgroup of E(kυ), as the reader may
readily verify. However, the assumption that p divides |E(kυ)| is essential to the
idea of the sieving.

If primes υ ∈ MK satisying the conditions above exist, we hope to uncover some
by computing sufficiently many |E(kυ)|. For K = Q there exist efficient methods of
computing |E(Fq)| for primes q, and judging from [Cohen] (pages 396-398), these
have become very impressive.

4.2. Solving the Equation P = pQ. If the sieving described above has not been
entirely successful in proving that Vp = {0}, then it will leave us with a subspace V ′

p

of Fp
r+s, containing Vp (V ′

p is simply the set of all solutions to the equations (40)).
Here it is useful to take a projective subset of V ′

p , which we denote by Sp; we will
let Sp be a subset of Zr+s\ {0} with the following properties

(1) if (b1, . . . , bp) ∈ Sp, then |bi| ≤ (p − 1)/2 unless p = 2 in which case
bi = 0 or 1,

(2) for every (ā1, . . . , ār+s) ∈ Vp, there exists exactly one (b1, . . . , bp) ∈ Sp

such that (ā1, . . . , ār+s) ≡ β(b1, . . . , bp) (mod p) for some β ∈ Fp.
It is clear that all that remains is to check, for all (b1, . . . , bp) ∈ Sp, if

r+s∑
i=1

biPi = pQ (41)

for some Q ∈ E(K).
For each (b1, . . . , bp) ∈ Sp, the equation (41) has exactly p2 solutions in E(C),

and it is not at all difficult to find these p2 possible Q = (x, y) ∈ E(C) with x, y ∈ C
computed as accurately as is desired using elliptic logarithms (see [Cohen]). This
leaves us with the problem of deciding, given a sufficiently accurate computation
of x, y ∈ C, whether or not these are in our number field K. We make use of the
following Lemma.

Lemma 4.1. Suppose the elliptic curve E is given by Weierstrass equation (3) with
a1, . . . , a6 ∈ OK , and suppose that P = nQ, where P = (x1, y1) and Q = (x2, y2)
are in E(K)\ {0}. If υ ∈ MK and υ(x2) < 0 then υ(x1) ≤ υ(x2).

Moreover, if c ∈ OK is such that cx1 ∈ OK , then cx2 ∈ OK .

Proof. Let E′ be the minimal Weierstrass equation at υ, and let (x′, y′) ∈ E′(Kυ)
correspond to coordinates (x, y) ∈ E(Kυ). Then by [Silv2] p172, there exists
u, r, t, s ∈ Oυ such that

x = u2x′ + r

y = u3y′ + u2sx′ + t.

If υ(x) < 0 then υ(x′) = υ(x) − 2υ(u), where υ(u) ≥ 0. Hence it is sufficient to
assume that υ(x′2) < 0 and show that υ(x′1) ≤ υ(x′2).

Let υ(x′2) = −2m, where m ∈ Z (as is well known, υ(x′2) < 0 implies that
3υ(x′2) = 2υ(y′2) and hence that υ(x′2) is even). Then the subset

E′
m(Kυ) = {(x′, y′) ∈ E′(Kυ) : υ(x′) ≤ −2m} ∪ {0}

is a subgroup of E′(Kυ) (see for example [Silv2], p187). Hence P ′ ∈ E′
m(Kυ) and

υ(x′1) ≤ −2n = υ(x′2).
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This concludes the proof of the first part of the Lemma. The second part is now
obvious. �

Hence given (b1, . . . , br) ∈ Sp, we calculate P = (x1, y1) =
∑

biPi, and find
c ∈ OK such that cx1 ∈ OK . If P = pQ, with Q = (x2, y2) ∈ OK , then cx2 ∈ OK

by the above Lemma. So if we compute the p2 values x2 accurately enough 3 we
can determine if any of the cx2 is expressible as a Z-linear combination of any
Z-basis for OK , using an LLL-based algorithm such as the one given on page 100
of [Cohen]. (Of course, if K = Q, then we can be much more down to earth. We
simply calculate the x2s accurately enough to see if any of cx2 is an integer to
many decimal places.) If any cx2 seems to equal an element a ∈ OK , then we can
substitute a/c for x in the equation for E and ask if there is a solution y ∈ K.

If we have found that none of the equations (41) is soluble with Q ∈ E(K), then
we have proven that the index is not divisible by p, and we can proceed to the next
prime until we reach α, our upper bound for the index. However, if we find that∑

biPi = pQ with Q ∈ E(K), then there is a 1 ≤ j ≤ r, such that p does not
divide bj . Here we replace Pj by Q. The index of the sublattice generated by the
new P1, . . . , Pr in Ê(K) is ≤ α/p. In any case, we continue until we get to show
that the index is 1.

5. Examples

Example 5.1. Here we return to our Example on page 12

E : Y 2 = X3 − 73705X − 7526231.

We recall that we established

h(P )− ĥ(P ) ≤ 0.8215 (42)

for all P ∈ E(Q). It is easy to show that this curve has no torsion. Using Cremona’s
program mwrank, we found that the 2-part of the Tate-Shafarevich group is trivial,
that the rank is 4, and that a basis for E(Q)/2E(Q) is

P1 = (−137,−1), P2 = (−157,−419), P3 = (−175,−113), P4 = (413,−5699);

this the program did in approximately 1.5 minutes.
The determinant of the height pairing matrix of P1, . . . , P4 is 248.987. We search

for points of logarithmic height ≤ 5 using Cremona’s program findinf. The search
takes a few seconds and turns up only one point: P1 = (−137,−1). This has
canonical height 4.41996. We note that had there been any point of canonical height
≤ 4.1, then its logarithmic height would have been ≤ 4.1 + 0.8215 < 5 and would
have been uncovered by the search. Hence there are no points of canonical height
≤ 4.1. Using Theorem 3.1 we find that the index of the span of P1, . . . , P4 is ≤ 1.88
. Hence we have found the Mordell-Weil group.

Next we compare our method to that outlined in the introduction. We recall
that if (X, Y ) ∈ E(Q), then we can write X = x/z2 where x, z ∈ Z. Hence to
search up to logarithmic height 5, our search region on x, z is

−148 ≤ x ≤ 148, 1 ≤ z ≤ 12.

3Here, if K has a real embedding, then it is useful to replace K with a real conjugate field at

the begining of the computation, and so reject all the values of x2 which are not real (taking into

account that in floating-point arithmetic over C, a real number is one with a very small imaginary
part!).
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We note that had we used Zagier’s 1.1 on page 2, we would be required to enumerate
all the points on E(Q) of canonical height ≤ 13.5831. If we combine this with our
estimate (42) above, we must list all points with logarithmic height 14.4046. The
corresponding search region is

−1802346 ≤ x ≤ 1802346, 1 ≤ z ≤ 1321.

To search this region is possible using a well written program such as findinf
mentioned above, but this would take a few hours on a work station.

Moreover we note that if we had to use Silverman’s bound on the difference
h(P ) − ĥ(P ) as well as Zagier’s Lemma we would have to search for all points on
E(Q) with logarithmic height ≤ 26.6073. Then the search region would be

−359255618029 ≤ x ≤ 359255618029, 1 ≤ z ≤ 599379.

Finally, at the suggestion of Dr Cremona, we compute the following table to give
another illustration of how reasonable our bound of 0.8215 is.

P h(P ) ĥ(P ) h(P )− ĥ(P )
P1 4.9199809 4.4199587 0.50002214
P2 5.0562458 4.4416097 0.61463607
P3 5.1647859 4.4605122 0.70427372
P4 6.0234476 5.8817481 0.14169942

Example 5.2. We return here to Mestre’s curve:

E : Y 2 + Y = X3 − 6349808647X + 193146346911036 (43)

We recall that on page 13 we proved that

h(P )− ĥ(P ) ≤ 0.682862 (44)

for all points P ∈ E(Q). Mestre (see [Mestre]) has shown that this curve has rank
at least 12 and has given 12 independent points (Mestre in fact gave a non-minimal
model of the curve, and the equation (43) which we will work with is the minimal
model). Moreover he has shown that the standard conjectures 4 imply that the rank
is 12. Here we will not take on the task of determining the rank unconditionally 5;
we will simply assume that the rank is 12, and obtain a basis from the points given
by Mestre. Here is a list of the points that Mestre gave (after applying the change
of variable which takes the points onto our minimal model (43)):

P1 = [49421, 200114], P2 = [49493, 333458], P3 = [49513, 362258],
P4 = [49632, 502899], P5 = [49667, 538049], P6 = [49797, 654674],
P7 = [49899, 735713], P8 = [50012, 818375], P9 = [50165, 921837],
P10 = [50215, 954017], P11 = [50823, 1305633], P12 = [51108, 1454591].

4The Birch and Swinnerton-Dyer conjecture, the Taniyama-Weil conjecture, and a suitable

Riemann hypothesis.
5Here mwrank would take too long. In the absence of 2-torsion, mwrank uses the algorithm for

2-descent described in [Bi, SwD] and in [Cre] pages 68-76. In this algorithm the size of the search

region for the homogeneous spaces is roughly proportional to the square root of the discriminant
of the elliptic curve. In cases where the discriminant is very large, such as that for Mestre’s

curve above, the algorithm is no longer practical. Unfortunately there does not seem to be any
unconditional algorithm suited for determining Mordell-Weil groups of curves of large discriminant
and no torsion.
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Here we proceeded with the sieving first. We used Pari/GP, which calculates
|E(Fq)| for prime q using the Shanks-Mestre algorithm (see [Cohen] page 397). We
found that it took roughly 1 second to compute |E(Fq)| for the first 200 primes
q (i.e. for all the primes ≤ 1223). We wrote a program which does the following:
for each prime 2 ≤ p ≤ 11 it lists all the primes q ≤ 1223 for which |E(Fq)| is
divisible by p but not p2 as recommended by our sieving algorithm on page 17.
Next, for each prime q satisfying these conditions, it computes a relation modulo
p, which must be satisfied by the vectors in Vp as defined on page 17 using the idea
described there; if it finds 12 independent relations then the rank of Vp is 0 and
the index is not divisible by p. For each of the primes p, the program continues
computing relations until the rank of the relations is 12 or until there are no more
prime q ≤ 1223 satisfying the conditions described. The program took roughly 25
seconds to run and output that for all the primes p ≤ 11 the rank of relations found
is 12 except for p = 2 where the rank was 10. We note that there are 47 primes q
in the above range satisfying the criterion that 2 divides |E(Fq)| but 4 does not.
Hence it seems very probable that the index is divisible by 2. Calculating the kernel
of the relations obtained we get that

V ′
2 = span {(1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0), (1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1)} (mod 2).

Hence we want to test if any of the 3 points P1 + P4 + P5 + P7 + P9 + P10,
P1 + P4 + P5 + P8 + P12, P7 + P8 + P9 + P10 + P12 is 2-divisible in E(Q). Using
Pari/GP we calculate the periods of E and the 2-division points 6 of the first 2
points. We get for each one a division point which is integral to 50 decimal places.
We checked that these give us integral points on the curve. We replace our old P7,
and P8 with these two new points:

P7 = [38756,−2294721]
P8 = [208314, 88938858],

thus gaining index 4.
We repeat the sieving for p = 2. This time the rank of relations obtained for

p = 2 is 11. We find that if the index is still divisible by 2 then P3 +P5 +P6 +P8 +
P10 + P11 + P12 must be 2-divisible in E(Q). Here none of the 2-division points of
this were integral and we used Lemma 4.1 to recover a rational 2-division point.
This becomes our new P3:

P3 =
[
2739835340

5041
,
141949849330392

357911

]
.

Repeating the sieving described for p = 2 we find that the rank of relations
obtained is 12, and hence the index of the span of our new P1, . . . , P12 is not
divisible by 2. Moreover, this index is not divisible by any prime 3 ≤ p ≤ 11 since
the index of the span of the original points was not.

We return to the sieving again. We calculate |E(Fq)| for the first 2500 primes q
(i.e. all the primes q ≤ 22307), and we extend our range for the prime p to all the
primes ≤ 200. It took Pari/GP roughly 25 seconds to compute all the |E(Fq)| for
all the primes q ≤ 22307. Our program this time took about 10 minutes to stop.
In each case the rank of relations computed was 12 except for p = 167, 179, 191

6Our use of terminology here is unconventional. Normally the term ‘2-division point’ denotes

a point of order 2. Where as we say Q is a 2-division point of P to mean P = 2Q.
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where the ranks were respectively 8, 10, 10. Hence if the index of the span of our
new P1, . . . , P12 is not 1, then it must be ≥ 167.

The determinant of the height matrix of P1, . . . , P12 is

R(P1, . . . , P12) = 586593208.77747

and computing γ12 we get 3.81181 according to formula (38) . Hence Theorem 3.1
gives us that if there are no rational points on E with canonical height ≤ λ then
the index of the span of P1, . . . , P12 in E(Q) satisfies:

n ≤ 74295365.4988
λ6

.

Using this inequality we find that if there where no points of canonical height
≤ 8.73 then the index would be ≤ 166.9 and we would be finished. Using the
inequality (44) we see the need to find all points of logarithmic height ≤ 9.41. We
used Cremona’s program findinf and found none in that range of canonical height
≤ 8.73 (the program took roughly 5 minutes to list all the points of logarithmic
height ≤ 9.41). Hence the points listed below form a basis assuming that the rank
(as predicted by the Birch and Swinnerton-Dyer conjecture) is 12:

P1 = [49421, 200114], P2 = [49493, 333458], P3 =
[
2739835340

5041 , 141949849330392
357911

]
,

P4 = [49632, 502899], P5 = [49667, 538049], P6 = [49797, 654674],
P7 = [38756, −2294721], P8 = [208314, 88938858], P9 = [50165, 921837],
P10 = [50215, 954017], P11 = [50823, 1305633], P12 = [51108, 1454591].

Example 5.3. Here we return to the curve

Y 2 + XY = X3 − 5818216808130X + 5401285759982786436 (45)

In [Kret] Kretschmer gave this as a curve of (exact) rank 8 with torsion of order
2, but did not give the points he found on the curve. We used Cremona’s program
mwrank and it gave a basis for E(Q)/2E(Q):

P1 = [1410240, −29977314], P2 = [1704648, −661672482],
P3 = [1421184, −55353570], P4 = [259761720/125, −189069355038/125],
P5 = [4740024, 9180268266], P6 = [975216, 808674546],
P7 = [7028688, −17659711842], P8 = [3418038804/289, 195936026213238/4913],
Q = [1402932, −701466],

where P1, . . . , P8 are of infinite order and Q is a point of order 2. Here it is easy
to show that there are no other torsion points. It remains to complete the infinite
descent.

Of course the index of the span of the points above is not divisible by 2 since
the points are independent modulo 2E(Q). Sieving (as in the above example) with
roughly 200 primes (here we excluded all the primes of bad reduction), we were able
to show that the index of the span of the given points is not divisible by 5, 7, 11, 13
and detected a possibly 3-divisible linear combination of the points. We found

P4 − P5 − P6 − P7 + P8 = 3 [−2623596,−1613325930]

and hence replacing P8 by

P8 = [−2623596,−1613325930]

we reduce the index by a factor of 3. Repeating the sieving we found that the new
index is not divisible by 3. Now we continued the sieving using 15000 primes q and
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our program proved that the index is not divisible by any prime p less than 500
(this took roughly 30 minutes).

The determinant of the height pairing matrix of the new P1, . . . , P8 is 184808.298.
Using Theorem 3.1 it is now sufficient to show that there are no points of canonical
height ≤ 1.96 whence it would follow that the index is 1. Here we recall that we
proved (on page 14) that

h(P )− ĥ(P ) ≤ 15.70819.

and so that to check that there are no points of canonical height ≤ 1.96 using this it
would necessary to uncover all the points of logarithmic height ≤ 17.67. We expect
that this computation would take roughly 10 days. However we also proved that
for any point P there is a point T which is either 0 or Q such that

h(P + T )− ĥ(P ) ≤ 11.03099 (46)

Now it is sufficient to enumerate all the points of logarithmic height ≤ 13 and check
that none have canonical height ≤ 1.96. We did this in roughly 45 minutes using
findinf. Hence it follows that

P1 = [1410240, −29977314], P2 = [1704648, −661672482],
P3 = [1421184, −55353570], P4 = [259761720/125, −189069355038/125],
P5 = [4740024, 9180268266], P6 = [975216, 808674546],
P7 = [7028688, −17659711842], P8 = [−2623596, −1613325930]
Q = [1402932, −701466],

are a basis for E(Q).
Finally we would like to point out that we were able to obtain the bound (46)

using the fact that the torsion group surjects onto E(Qp)/E0(Qp) for most of the
primes where the Tamagawa index is not 1. Since this will not be be the case
for most curves we would like to illustrate a third method which can be used to
complete the infinite descent when the bound for h(P ) − ĥ(P ) is too large. We
note that for all the non-archimedean primes except 2 and 3, the Tamagawa index
is either 1 or 2 (see the table on page 14). In any case, if P ∈ E(Q) was of infinite
order, and had canonical height ≤ 1.96, then 2P will have canonical height ≤ 7.84
and will have good reduction at all the non-archimedean primes except possibly at
2 or 3. Hence, in the notation of Theorem 2.1 we have

ε(p, 2P ) = 1

for all primes p 6= 2, 3, ∞ and

ε(p, 2P ) ≤ εp

for p = 2, 3, ∞. Using the values of εp given in the table on page 14 for the primes
p = 2, 3, ∞ and Theorem 2.1 we get

h(2P )− ĥ(2P ) ≤ 6.39956.

Hence to uncover 2P we need to find all points of logarithmic height ≤ 14.24 and
this would not take much longer than the search we have already done. Finally
we would have to test each point found with canonical height ≤ 7.84 to see if it is
twice a point.
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6. Concluding Remarks

Regarding the bound for h − ĥ, it would be useful to develop better methods
for calculating the constants ευ. Here we suspect that for υ non-archimedean, a
case-by-case method (reminiscent of Tate’s algorithm) exists, and would be best
for machine implementation of the algorithm.

We would also like to take this opportunity to point out that it would be of great
value if the 2-descent algorithm in [Bi, SwD] was improved, or extended to cope
with elliptic curves defined over number fields.
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