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Abstract. These are expository notes that accompany my talk at the 25th
Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed
light on the following two questions:

(i) Given a Diophantine equation, what information can be obtained by
following the strategy of Wiles’ proof of Fermat’s Last Theorem?

(ii) Is it useful to combine this approach with traditional approaches to Dio-
phantine equations: Diophantine approximation, arithmetic geometry,
. . . ?
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1. Introduction

These are expository notes that accompany my talk at the 25th Journées Arith-
métiques, July 2–6, 2007, Edinburgh, Scotland. None of the ideas described in
Sections 2 and 3 are due to myself; these are now well-known ideas for which credit
goes to Hellegouarch, Frey, Serre, Ribet, Wiles, Taylor, etc. The rest of the talk
is based on work done in collaboration either with Yann Bugeaud and Maurice
Mignotte [6], [7], [8] or with John Cremona [18]. This work builds on the ideas of
many others: Darmon, Merel, Kraus, Bennett, Skinner, Ivorra, etc.

I am foremost concerned with the explicit resolution of Diophantine equations.
There are three competing traditions in this field.

(i) elementary methods; I need not explain what these are.
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(ii) Diophantine approximation; one uses analytic techniques to derive bounds
for the sizes of solutions of certain Diophantine equations.

(iii) arithmetic geometry; one views Diophantine equations as algebraic varieties.
The modular approach, used in Wiles’ celebrated proof of Fermat’s Last Theorem,

is the most radical recent idea in the field of Diophantine equations. It is based
on a surprising series of ideas ‘Frey curves’, ‘Galois representations’, ‘modularity’,
‘level-lowering’, etc and does not really fit into the traditional view-points i–iii.

My objective is to explain the kind of information that can be obtained from
the modular approach and to give a sense that it is often necessary to combine this
method with the traditional view-points i–iii. To maintain some coherence of expo-
sition I will focus on the work done by myself and collaborators. It would however
be unfair not to mention that there are others who have successfully combined the
modular approach with traditional approaches, such as Bennett [2] or (as in the
truly wonderful paper of) Poonen, Schaefer and Stoll [15].

This article is aimed at a general number theory audience, and so I will suppress
the technicalities involved as much as possible.

2. Fermat’s Last Theorem

The quickest way to immerse oneself into the modular approach is through a
summary of Wiles’ proof [21], [20] of Fermat’s Last Theorem. Suppose there is
some (x, y, z) satisfying xp +yp +zp = 0 where x, y, z are coprime integers, xyz 6= 0
and p ≥ 5 is prime. Using the symmetries of the Fermat equation, there is no loss
of generality in assuming that x ≡ −1 (mod 4) and 2 | y. Associate to this solution
(x, y, z) the Frey elliptic curve

Ex,y,z : Y 2 = X(X − xp)(X + yp).

This Frey curve has minimal discriminant

∆min =
1
28

(xyz)2p.

Wiles proved the modularity of semi-stable elliptic curves, which includes the curve
Ex,y,z. Historically this was the last step in the proof of Fermat’s Last Theorem.
The modularity is essential for the next step where we apply Ribet’s Theorem.
Before doing that observe that modularity has been established for all elliptic curves
over the rationals [5]—I shall not need to mention modularity again.

We now look at the Galois representation on the p-torsion of Ex,y,z. Ribet’s
Level-lowering Theorem predicts that this Galois representation arises from a new-
form 1 of level 2. Later on I shall talk a little more about how Ribet’s Theorem
applies to Frey curves, and say a little about newforms. For now let me just quote
the fact that there are no newforms of level 2 and so we have a contradiction.

Before we talk a little more about Frey curves and newforms, let us observe that
the Fermat equation has solutions, for example (−1, 0, 1). All the known solutions
satisfy xyz = 0. We did not state where the assumption xyz 6= 0 was used. If
xyz = 0 then the Frey curve has zero discriminant and so is not even an elliptic
curve and so the rest of the proof is not applicable.

1For those familiar with modular forms, I shall only be concerned with elliptic modular forms
of weight 2. By a newform of level N I mean a normalized cusp form of weight 2 belonging to the
new space at level N , that is a simultaneous eigenfunction for the Hecke operators.
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3. How the Modular Machinery is Applied to Diophantine Equations

Suppose we have a Diophantine equation that we are interested in solving; the
Diophantine equation should have some prime exponent p ≥ 5. Our first step is to
associate a hypothetical solution of the Diophantine equation to a Frey curve. A
Frey curve should satisfy the following conditions.

• Be an elliptic curve whose coefficients depend on the hypothetical solution
of the Diophantine equation.

• Have minimal discriminant ∆ = C ×Dp where
– C depends on the Diophantine equation that we would like to solve

and not on the solution, and
– D depends on the solution.

• The primes dividing D are primes of multiplicative reduction for the elliptic
curve.

The next step is to look at the Galois representation on the p-torsion and apply Ri-
bet’s Theorem. To apply Ribet’s Theorem we need that the Galois representation
is irreducible (or some similar condition). For this we probably need to quote some
theorems of Mazur. For example this is automatically satisfied if p > 167 and the
j-invariant is non-integral. Ribet’s Theorem then tells us that the Galois represen-
tation on the p-torsion arises from a newform at a certain (explicitly computable)
level N . The main point is that the level depends only on C which depends on
the original Diophantine equation, and not on D which depends on the solution.
This is exactly the same as in the proof of Fermat’s Last Theorem where N = 2
is independent of the solution. Now if there are no newforms of level N then our
original Diophantine equation has no non-trivial solutions. The trivial solutions are
the ones that make the Frey curve singular.

We should say that Frey curves have been constructed for only a few families of
Diophantine equations. For example,

axp + byp = czp, axp + byp = cz2, axp + byp = cz3, . . . .

What happens if there are newforms of the predicted level N? It is time to talk
a little about newforms. Associated to any positive integer N are the newforms
of level N . There are finitely many of these and they can be determined by the
modular symbols algorithm as explained in the books of Cremona [11] and Stein
[19]. It is helpful to think of newforms in terms of their Fourier expansion around
∞:

f = q +
∞∑

n=2

anqn.

Here the coefficients an are algebraic integers in some totally real number field. If
all the an ∈ Z we say the newform is rational. Otherwise the newform is said to be
irrational. Rational newforms correspond to elliptic curves, and irrational ones to
higher dimensional modular abelian varieties.

Let us return to our problem of attacking a specific Diophantine equation using
the modular approach. We obtain a list of finitely many newforms at the predicted
level N . We want to know what information these newforms tell us about the
Diophantine equation. Surprisingly, it is much easier to deal with the non-rational
newforms than with the rational ones. The reason is that the higher dimensional
modular abelian variety that corresponds to a non-rational newform looks nothing
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like our (1-dimensional) Frey elliptic curve and this helps us to obtain very stringent
conditions on the solutions to the Diophantine equation. For example, we can
obtain an explicit bound for the exponent p. This is sometimes true for rational
newforms as well, but very often rational newforms are troublesome. It is now
appropriate to give an example.

4. The Generalized Ramanujan–Nagell Equation

In 1913 Ramanujan asked for the solutions to the equation x2+7 = 2m. This was
solved by Trygve Nagell in 1948, and the solution is found in several undergraduate
algebraic number theory texts. The equation is highly unusual in that it has such
large number of solutions (x,m) = (±1, 3), (±3, 4), (±5, 5), (±11, 7), (±181, 15). It
is natural to wonder about the more general equation

(1) x2 + 7 = ym, x, y,m ∈ Z, m ≥ 3.

But for the history of this type of problem one needs to go back much earlier, to
Victor Lebesgue who in 1850 showed that the only solution to the equation

x2 + 1 = ym, x, y,m ∈ Z, m ≥ 3,

is the trivial one (x, y) = (0, 1). This is significant as it is one of the earliest
non-trivial exponential Diophantine equation to have been solved. By exponential
I mean that one of the unknowns is an exponent. Lebesgue’s trick is to factor the
left hand-side over Z[i] and exploit the fact that the two factors (x + i), (x− i) are
coprime Gaussian integers and so must be perfect powers (for m odd). Over the
next 140 years many equations of the form

x2 + D = ym, x, y,m ∈ Z, m ≥ 3,

have been solved using Lebesgue’s elementary trick. In 1993 John Cohn [10] pub-
lished an exhaustive survey of this equation which completes the solution for all
but 23 values of D in the range 1 ≤ D ≤ 100. These are

(2) 7, 15, 18, 23, 25, 28, 31, 39, 45, 47, 60, 63, 71, 72, 79, 87, 92, 99, 100,

plus four more values which we write separately: 55, 74, 86, 95. The cases D = 74,
D = 86 were dealt with a little later by Mignotte and de Weger, and D = 55, 95 by
Bennett and Skinner. This leaves us with the values of D in the range (2). It turns
out that these are beyond elementary methods because x +

√
−D and x −

√
−D

need not be coprime.
Let us return to x2 + 7 = ym and attack it by the modular approach. This is

based on joint work with Cremona [18] and joint work with Bugeaud and Mignotte
[7], but in fact we are following in the footsteps of Kraus [14]. We restrict ourselves
to

(3) x2 + 7 = yp, x, y ∈ Z, p ≥ 11 prime, y even.

This is the hard case that is beyond elementary methods. There is no loss of
generality in supposing x ≡ 1 (mod 4).

We associate to this solution the Frey curve:

(4) Ex : Y 2 = X3 + xX2 +
x2 + 7

4
X.
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This has minimal discriminant and conductor

(5) ∆x =
−7y2p

212
, Nx = 14

∏
q prime

q|y, q 6=2,7

q,

and so is clearly a Frey curve in the sense explained earlier. Now Ribet’s Theorem
predicts that the Galois representation on the p-torsion of Ex arises from a newform
of level 14. There is only one newform of level 14 and this turns out to be rational
and indeed corresponds to the elliptic curve

E : Y 2 + XY + Y = X3 + 4X − 6,

of conductor 14. The elliptic curves Ex and E are related as follows: let l 6= 2, 7
be prime, then

(a) if l - y, then #Ex(Fl) ≡ #E(Fl) (mod p),
(b) if l | y, then #E(Fl) ≡ 0, 2l + 2 (mod p).

Here #E(Fl) is the number of points on the elliptic curve E over the finite field
Fl. We are not yet successful in showing that there are no solutions for all p ≥ 11,
but it is easy to give a criterion for the non-existence of solutions for a given prime
exponent p.

Lemma. Fix p ≥ 11. Let l 6= 2, 7 be prime satisfying
(i) #E(Fl) 6≡ 0, 2l + 2 (mod p)
(ii) #Ex(Fl) 6≡ #E(Fl) (mod p) for all x ∈ Fl satisfying x2 + 7 ∈ F∗l

p.
Then there are no solutions to the equation x2 + 7 = yp for the given exponent p.

The lemma is simply a restatement what we said so far. If we choose l in an
arbitrary way then it is likely that condition (ii) will not hold. Indeed if p - (l − 1)
then F∗l

p = F∗l . However, if l = np + 1 then #F∗l
p = n. Hence a correct choice for

l would be a prime of the form np + 1 where n is small. If criteria (i), (ii) do not
hold for some l we choose another of the same form until we succeed. This gives
a very efficient method for showing that there are no solutions for a given prime
exponent p ≥ 11; a method that is moreover straightforward to program since it
involves only finite field arithmetic and point counting on elliptic curves. In fact it
took four days of computations on a modest desktop computer (in 2002) to prove
the following [18].

Lemma. (Cremona-S.) Equation (3) has no solutions for 11 ≤ p ≤ 108.

Methods of Diophantine approximation—in particular, Baker’s theory of lin-
ear forms in logarithms—do give bounds for the solutions of many families of
Diophantine equations, including (3). For example, in 1998 Lesage showed that
p < 6.6 × 1015. He also used an elementary method to rule out solutions for
11 ≤ p < 5000.

The story has a happy ending. In 2003, motivated by this work, Maurice
Mignotte substantially improved the bounds for linear forms in three logarithms
which is precisely what is needed for (3). In particular, the new bounds show that
p ≤ 1.11×109. However, using information that can be obtained from the modular
approach, the theory of linear forms in logarithms can be made to work better and
we obtain p ≤ 2 × 108. Now re-running the old programs we obtain the following
theorem [7].
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Theorem. (Bugeaud-Mignotte-S.) The only solutions to equation (1) are the fol-
lowing:

m x y m x y m x y
3 ±1 2 3 ±181 32 4 ±3 ±2
5 ±5 2 5 ±181 8 7 ±11 2
15 ±181 2

The same method has been used to solve x2 + D = ym for the 19 outstanding
values of D mentioned above.

5. Perfect Powers in the Fibonacci Sequence

There is an important lesson to be learnt from the solution to x2 + 7 = ym. It
is that the modular approach provides a tremendous amount of local information
(i.e. congruences) on the solutions of the Diophantine equation. Progress can be
made if we figure out a way of combining this with global information given by
other methods (e.g. Baker’s theory).

We now turn to another classical Diophantine problem: determine all perfect
powers in the Fibonacci sequence. Partial results have been obtained by Ljunggren,
Cohn, Wyler, London, Finkelstein, Robbins, Pethö, McLaughlin, etc. It is said that
the question was first asked by Mordell in 1950s, although its first appearance in
print is in a 1964 paper of John Cohn [9].

Let {Fn}∞n=1 be the Fibonacci sequence, defined as usual by F0 = 0, F1 = 1,
Fn+2 = Fn + Fn+1. The equation we want to solve is

Fn = ym, n, y, m ∈ Z, n ≥ 0, m ≥ 2.

The problem is much more difficult than x2 +7 = ym. The reason for the difficulty
is that x2 + 7 = ym has solutions for only finitely many values of m. We more-or-
less solve the problem by showing that there are no solutions for large values of m.
The Fibonacci powers problem is much more difficult because F1 = 1 = 1m gives a
solution for all values of m. Therefore any method which gives a contradiction for
a given fixed exponent (such as one in the previous section) is bound to fail. Again
we focus on the difficult case

(6) Fn = yp, p ≥ 7 is prime, and n is odd.

Our objective is to show that n = y = 1 (the only solution for this case).
It is appropriate here to talk a little about Baker’s theory of linear forms in loga-

rithms. Recall the well-known expression for Fibonacci numbers (Binet’s formula),

Fn =
λn − µn

√
5

, λ =
1 +

√
5

2
, µ =

−1
λ

.

The equation Fn = yp yields ∣∣∣∣ λn

√
5yp

− 1
∣∣∣∣ =

1
λnyp

√
5
.

Suppose now that n > 1 and so y > 1. Then this is saying that λn/(yp
√

5) is close
to 1, which means that its logarithm is small. Quantitatively we obtain

(7) |n log λ− log
√

5− p log y| ≤ 2
λnyp

√
5
.
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Here you see an upper bound for a linear form in logarithms of algebraic numbers.
Baker’s theory (and its refinements) supply lower bounds for such linear forms. The
exact lower bound depends on the version quoted and is likely to be complicated.
However, you can obtain a lower bound of the form

C1

yC2(log p)C3
≤ |n log λ− log

√
5− p log y| ≤ 2

λnyp
√

5
,

for some positive constants C1, C2, C3. Plainly, if p is large, then the left-most
term is larger than the right-most term, giving a contradiction. Thus p is bounded
by some bound that depends on the constants Ci. Mignotte’s bounds for linear
forms in three logarithms show that if n > 1 then p ≤ 2× 108.

By a rather involved detour through Thue equations one also obtains bounds for
the index n in terms of p. This step uses ideas of Bugeaud and Győry and yields
bounds that are rather complicated to state (as they involve many terms), but they
very roughly say that n is at most p10p. Even with p = 7 we obtain n ≤ 3× 1046.

We would like to apply the modular approach here. We skip over all the details
you have seen before (Frey curve, level-lowering, etc.). However all you need to
know is the following fact which I hope you will readily believe following what you
saw in the previous section.

Fact: Fix a prime exponent p ≥ 7 and another prime l 6= 2, 5. There exists an
easily computable and fairly small subset S(l, p) ⊂ Fl such that if (n, y, p) is a
solution to (6) then Fn ∈ S(l, p).

By Fn we obviously mean the reduction of Fn modulo l. In other words, the
modular approach is giving us stringent congruence conditions for the Fibonacci
numbers that are perfect powers. We want congruences for n and not for Fn. Let
Ml be the period of the Fibonacci sequence modulo l. Let

N (l, p) = {m ∈ Z/Ml : Fm ∈ S(l, p)}.

It follows that if (n, y, p) is a solution to (6) then ñ ∈ N (l, p), where ñ denotes
reduction modulo Ml. In other words, we obtain stringent conditions on the index
n modulo Ml. Now it is easy to show that Ml divides l2 − 1, and it is likely to be
a composite number. In fact with a careful choice of l we can ensure that Ml is a
‘smooth integer’, which means that it is divisible only by small primes.

Let l1, . . . , lr be distinct primes write Mi for Mli . We have congruence conditions
for n modulo each Mi. By the Chinese Remainder Theorem we obtain congruence
conditions for n modulo M = lcm(M1,M1, . . . ,Mr). Here an arbitrary choice of
li would lead to a combinatorial explosion of possibilities when we attempt to lift
congruences modulo Mi to congruences modulo M . However choosing the li so
that the Mi are smooth and have many prime factors in common maximises the
probability of contradictions and we get a few congruences for n modulo a large M .

For example, fix p = 7. By an appropriate choice of hundreds of primes l we
obtain, utilising a computer,

ñ ∈
{

1̃, ã, b̃, c̃
}
⊂ Z/M
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where

a = 100704598854427777024179418273944411482999002799,
b = 100704598854427777024179418273944411482999002801,
c = 201409197708855554048358836547888822965998005599,
M = 25 × 33 × 52 × 7× 11× · · · × 109.

Thus the index n belongs to the set

1, a, b, c, 1 + M, a + M, b + M, c + M, 1 + 2M, . . . .

Note that a, b, c, M > 1047 and we said previously that n ≤ 3× 1046. Hence n = 1
as desired. Notice how local information obtained from the modular approach is
combined with global information obtained from Diophantine approximation.

We have solved the problem for p = 7. In fact this strategy is fairly realistic for
primes p ≤ 1000, but is completely incapable of dealing with much larger primes.
Our bound for p ≤ 2× 108 seems hopelessly out of reach.

However, it is possible to use the congruences from the modular approach to
prove that n ≡ ±1 (mod p) for all p ≤ 2× 108. Writing n = kp± 1 we can rewrite
the inequality (7) as∣∣∣p log

(
λk/y

)
− log

(√
5/λ±1

)∣∣∣ ≤ 2
λnyp

√
5
.

Thus what was a linear form in three logarithms has miraculously transformed
into a linear form in two logarithms. Baker’s theory for linear forms in logarithms
works much better now, and using bounds by Laurent, Mignotte and Nesterenko
we obtain p < 733. Our bound for n in terms of p now gives n < 108733 which is
within reach of our previous arguments, and we are able to complete the proof of
the following theorem [6].

Theorem. (Bugeaud-Mignotte-S.) The only perfect powers in the Fibonacci se-
quence are F0 = 0, F1 = F2 = 1, F6 = 8 and F12 = 144.

The computations needed took about 158 hours on a modest desktop computer
and utilised the computer packages PARI [1] and MAGMA [4].

6. Multi-Frey Approach

We saw how congruences obtained from the modular approach can help to solve
Diophantine equations. The multi-Frey approach is a newly developed variant of the
modular approach. It uses congruences obtained from several Frey curves simulta-
neously. It has been used to attack multiply-exponential Diophantine equations, in
other words Diophantine equations involving several unknown exponents. Here is
a specimen result [8].

Theorem. (Bugeaud-Mignotte-S.) Suppose 3 ≤ q < 100 is prime. The only solu-
tions to the equation

quxn − 2ryn = ±1, x, y non-zero integers, u, r ≥ 0, n ≥ 3
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are

1− 2 = −1, 3− 2 = 1, 3− 4 = −1, 9− 8 = 1, 5− 4 = 1,

7− 8 = −1, 17− 16 = 1, 31− 32 = −1, 5× 24 − 34 = −1,

19× 33 − 83 = 1, 17× 73 − 183 = −1, 37× 33 − 103 = −1,

43× 23 − 73 = 1, 53− 2× 33 = −1.

The proof uses all the methods mentioned previously, together with three simul-
taneous Frey curves and a very deep theorem of Bennett on equations of the forms
Axn −Byn = ±1.

Currently I am working with Szabolcs Tengely on Diophantine equations of the
form x2+qu = 2ryn using the multi-Frey approach and a range of classical methods.

7. Some Open Problems

It is dishonest to give the impression that the current methods have flattened
each and every problem. I would like to mention two of my favourite problems
where good progress has been made using the modular and other approaches, but
which are still out of reach.

The first problem is to solve

x3 + y3 = zn, x, y, z are non-zero coprime integers, n ≥ 3.

Bruin [3] showed, using descent and Chabauty arguments, that there are no solu-
tions for n = 4, 5. Kraus [14] used the modular approach to show the same for
prime exponents n with 17 ≤ n < 104. By refining Kraus’ approach, Dahmen [13]
shows that there are no solutions for n = 5, 7, 11, 13. Thus we know that there
are no solutions for n ≤ 104. Although this range is easily extendible, there is
no known method for bounding the exponent n. Recently [17] I have shown that
the set of exponents n for which this equation has solutions (in non-zero coprime
integers) has density 0; the proof uses a combination of the modular approach and
the Brauer–Manin obstruction to points on curves.

The second problem is to solve.

x2 − 2 = ym, x, y are integers, m ≥ 3.

This problem is similar to the Fibonacci powers problem in that there is a solution
12− 2 = (−1)m for all odd exponents m. However any bound on x in terms of m is
likely to be something like 10mm

. For a further discussion of this problem see Henri
Cohen’s new book [12] (in particular, Volume II, pages 517–521). That book also
contains a detailed exposition of the modular approach (Volume II, Chapter 15)
and is an indispensable handbook for any lover/solver of Diophantine equations.
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