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The Brauer–Manin obstruction for curves having

split Jacobians

par Samir SIKSEK

Résumé. Soit X → A un morphism (qui n’est pas constant)
d’une courbe X à une variété abélienneA, tout définis sur un corps
de nombres k. Supposons que X ne satisfait pas le principe de
Hasse. Nous donnons des conditions à suffisantes pour l’obstruction
de Brauer-Manin pour être la seule obstruction au principe de
Hasse. Ces conditions de suffisance sont légèrement plus fortes
que supposer que A(k) et X(A/k) sont fini.

Abstract. Let X → A be a non-constant morphism from a
curve X to an abelian variety A, all defined over a number field
k. Suppose that X is a counterexample to the Hasse principle.
We give sufficient conditions for the failure of the Hasse princi-
ple on X to be accounted for by the Brauer–Manin obstruction.
These sufficiency conditions are slightly stronger than assuming
that A(k) and X(A/k) are finite.

1. Introduction

Let k be a number field, and let Ak be the adèles of k. Suppose that X is
a smooth and projective variety over k. We say that X is a counterexample
to the Hasse principle (or that the Hasse principle fails for X) if X has no
k-rational points but has rational points over all the completions of k. More
concisely, X is a counterexample to the Hasse principle if X(Ak) 6= ∅ but
X(k) = ∅.

Suppose that X(Ak) 6= ∅. The global reciprocity applied to the Brauer–
Grothendieck group Br(X) defines a certain subset X(Ak)Br(X) ⊆ X(Ak)
that contains the diagonal image of X(k). Hence if X(Ak)Br(X) = ∅, it is
clear that the Hasse principle fails for X. In this case one says that the
failure of the Hasse principle for X is accounted for by the Brauer–Manin
obstruction.

Now let X be a smooth projective curve over a number field k, let JX

be its Jacobian, and X(JX/k) be the Tate–Shafarevich group of JX/k.
It is an open question whether or not all counterexamples to the Hasse
principle on curves can be accounted for by the Brauer–Manin obstruction.
(The answer to the same question for surfaces is known to be negative,



2 Samir Siksek

see [7, Chapter 8]). We know of conditional answers in the following two
situations:

(1) If X has no k-rational divisor class of degree 1 then the (conjectured)
finiteness of X(JX/k) implies that X(Ak)Br(X) = ∅; see [7, Cor.
6.2.5].

(2) If X(k) = ∅ and JX(k) is finite then again the (conjectured) finiteness
of X(JX/k) implies that X(Ak)Br(X) = ∅; this theorem is due to
Scharaschkin, see [6] or [7, Cor. 6.2.5].

Scharaschkin’s theorem is proved using an embedding X ↪→ JX corre-
sponding to a k-rational divisor of degree 1. If the Jacobian JX splits over
k, then for every factor A we have a non-constant morphism φ : X → A. In
this case it is natural to ask whether results similar to Scharaschkin’s theo-
rem can be obtained, with the finiteness of JX(k) and X(JX/k) replaced
by the weaker hypotheses: A(k) and X(A/k) are finite. It is the purpose
of this paper to show that this can be done under one extra assumption.

To state our main theorem we need to set up some notation. Suppose
as above that φ : X → A is a non-constant morphism from a smooth
projective curve X to an abelian variety A, all defined over a number
field k. It is straightforward to see that φ(X) must be a complete (and
irreducible) curve on A, and that the induced map X → φ(X) is therefore
a finite morphism. We define the degree of φ, denoted deg(φ), to be the
degree of this finite morphism X → φ(X). If Q ∈ A such that φ−1(Q) 6= ∅,
then let lQ/k be the compositum of the residue fields of all points in φ−1(Q).
Clearly lQ/k is a Galois extension.

We are now ready to state our two theorems.

Theorem 1.1. Let k be a number field, and let X be a smooth projective
curve defined over k. Suppose φ : X → A is a non-constant morphism
from X to an abelian variety A (with φ and A also defined over k), such
that A(k) and X(A/k) are both finite. Suppose also that for all of (the
finitely many) Q ∈ A(k) the following condition is satisfied: either φ−1(Q)
is empty, or else there exists an element of Gal(lQ/k) that acts freely on
φ−1(Q). Then X(k) = X(Ak)Br(X) = ∅.

Theorem 1.2. Let k be a number field, and let X be a smooth projective
curve defined over k such that X(k) = ∅. Suppose φ : X → A is a non-
constant morphism from X to an abelian variety A (with φ and A also
defined over k). If A(k) and X(A/k) are both finite, and if deg(φ) < 6
then X(Ak)Br(X) = ∅.

We will delay the proofs of our theorems till Section 3. First we give an
example, showing that our results answer an interesting question asked by
Coray and Manoil.
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2. An Example

Let X/Q be the genus 2 curve defined by

X : s2 = 2(t3 + 7)(t3 − 7).

In [3, page 183] Coray and Manoil showed that the curve X is a coun-
terexample to the Hasse principle, despite possessing a rational divisor of
degree 1. Coray and Manoil ask if this counterexample can be accounted
for by the Brauer–Manin obstruction; we answer their question positively.

It is convenient to recount the proof that X(Q) = ∅. Let E1 be the
elliptic curve

E1 : y2 = x3 − 392,

and note that there is a morphism X → E1 given by (t, s) 7→ (2t2, 2s) =
(x, y). It is noted in [3] that E1 has only one rational point at infinity.
Since the points on X above the point at infinity on E1 are not rational,
we deduce that X(Q) = ∅.

Using a PARI/GP program of Tom Womack1 we find that the curve E1

has analytic rank 0. It follows from a well-known theorem of Kolyvagin [5]
that the Tate-Shafarevich group of E1 is finite. Moreover, the map φ has
degree 2. We deduce by Theorem 1.2 that X(AQ)Br(X) = ∅ and so this
counterexample is (unconditionally) accounted for by the Brauer–Manin
obstruction.

We note in passing that the theorem of Scharaschkin cited in the intro-
duction does not apply to X since JX(Q) is infinite. To see this, note that
JX is isogenous (see [1, page 155]) to E1 × E2 where

E2 : y2 = x3 + 19208.

Moreover, using Cremona’s program2 mwrank [4], we find that E2(Q) has
rank 1. This shows that JX(Q) is infinite.

3. Proofs of the Theorems

Proof of Theorem 1.1. We want to show that X(Ak)Br(X) = ∅. Thus sup-
pose (Pυ)υ ∈ X(Ak)Br(X) and we would like to deduce a contradiction.

From the functorial properties of the Brauer-Manin pairing [7, page
102] we know that (φ(Pυ))υ is in A(Ak)Br(A). The finiteness of A(k) and
X(A/k) together imply [7, Prop. 6.2.4] that A(Ak)Br(A) is generated by
the diagonal image of A(k) and the connected component of A(Ak). We
deduce the existence of some Q ∈ A(k) such that φ(Pυ) = Q for all non-
archimedean primes υ.

Given a non-archimedean prime υ of k, denote the completion of lQ at
the prime above υ by lQ,υ.

1Obtainable from http://www.maths.nott.ac.uk/personal/pmxtow/maths.htm
2Obtainable from http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs/
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From the hypotheses of the Theorem, there is some σ ∈ Gal(lQ/k) that
acts freely on φ−1(Q). By the Chebotarev density theorem [2, page 227],
there must be some non-archimedean prime υ of k satisfying:

• The prime υ is unramified in lQ.
• Some conjugate τ of σ generates the Galois group of the extension

lQ,υ/kυ.

Now as σ acts freely on φ−1(Q) then so will τ . Hence there is no point
in φ−1(Q) that is defined over kv. This contradicts φ(Pυ) = Q. �

Proof of Theorem 1.2. Suppose that X(k) = ∅ but X(Ak)Br(X) 6= ∅. Let
(Pυ)υ ∈ X(Ak)Br(X). As in the proof above we see that there is some
Q ∈ A(k) such that φ(Pυ) = Q for all non-archimedean primes υ.

Choose points R1, . . . , Rn which represent the disjoint Galois orbits of
φ−1(Q), and for each i let fi be the minimal polynomial of some generator
of k(Ri)/k. We note that fi has a root in some field l ⊇ k if and only if
there is an embedding k(Ri) ↪→ l fixing k.

Let f =
∏

fi. It follows that the polynomial f has a root in some field
l ⊇ k, if and only if there is some some point in φ−1(Q) whose residue field
is contained in l. We note that deg(f) ≤ deg(φ) < 6 and f has root in
kυ for all non-archimedean υ. Hence [2, page 229] f has a root in k, and
so there is some k-rational point in φ−1(Q). Thus X(k) 6= ∅, giving us a
contradiction. �
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