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Abstract. Let k be a perfect field, X a smooth curve over k, and denote

by Xc the subset of closed points of X. We show that for any non-constant
element f of the function field k(X) there exists a natural homomorphism

Pic(X)→ k∗/Gf (k)

where
Gf (k) :=

Y
P∈Xc

Norm
k(P)/k

(k(P)∗)ordP (f).

We explain how this generalizes the usual results on descents on Jacobians and
Picard groups of curves.

1. Introduction

Let k be a perfect field and X a smooth curve over k, by which we mean a com-
plete, non-singular and absolutely irreducible curve over k. Denote the function
field of X over k by k(X), the Jacobian by JX , and the Picard group by Pic(X)
(see Section 2 for the definition of the Picard group). The groups JX and Pic(X)
are often studied (particularly when k is a number field) by constructing homomor-
phisms from either of these groups to groups of finite exponent. For example:

(1) Descent algorithms on curves are usually concerned with the construction
of homomorphisms from the Jacobian JX(k) to groups of the form L∗/L∗q,
for suitably defined finite k-algebras L, and positive integers q. As observed
by Schaefer ([6]), virtually all such descents utilize functions on the curve
whose divisors are q-divisible.

(2) Let Y be a non-singular projective variety and f a non-constant element
of the function field k(Y ) whose divisor is a norm for some finite extension
K/k. Then there is a homomorphism CH0(Y ) → k∗/Norm(K∗) (see for
example [1, pages 447-448]). If Y is our (smooth) curve X then we have a
homomorphism Pic(X) → k∗/Norm(K∗).

In view of this it is natural to ask the following question: given an arbitrary non-
constant function f ∈ k(X), is there an induced homomorphism of JX(k) or Pic(X)
into some group of finite exponent as above? In this paper we answer this ques-
tion affirmatively. It is our hope that these homomorphisms will find interesting
applications in the study of the arithmetic of curves.

Before stating the main theorem of this paper we set some notation. A closed
point P of X corresponds to a discrete valuation ring OP of k(X) containing k,
with maximal ideal mP . The residue field of P is by definition k(P) := OP/mP ,
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and is a finite extension of k. The degree of P is given by |P| := [k(P) : k]. If
g ∈ k(X) is regular at point P, that is g ∈ OP , then the value of g at P, denoted
by g(P), is defined to be the image of g in k(P); it thus makes sense to speak of
the Normk(P)/k(g(P)) ∈ k. If K is a finite extension of k, and n is an integer then,
as usual, we let

Norm
K/k

(K∗)n := {αn : α ∈ Norm
K/k

(K∗)}.

Clearly NormK/k(K∗)0 = {1}. For a closed point P ∈ X let ordP : k(X)∗ → Z
be the corresponding valuation. We denote the set of closed points on X by Xc;
this of course is all of X except for the generic point. Now suppose f ∈ k(X) is a
non-constant function on the curve, and we let

(1) Gf (k) :=
∏
P∈Xc

Norm
k(P)/k

(k(P)∗)ordP(f).

The product makes sense since all but finitely many of the terms are {1}, and
the result is clearly a subgroup of k∗. Our main theorem defines a homomorphism
from the Picard group Pic(X) to the quotient group k∗/Gf (k) (see Section 2 for the
definition of the Picard group). In essence, this means that we are doing descent
on the Picard group of the curve.

Theorem 1. Let X be a smooth curve over the perfect field k. Suppose f is a
non-constant element of the function field k(X), and let Gf (k) be the subgroup of
k∗ defined above. Then f induces a unique homomorphism

(2) φf : Pic(X) → k∗/Gf (k)

satisfying the following property: if
∑
mjQj is a divisor on X whose support is

disjoint from the poles and zeros of f , then the class [
∑
mjQj ] of this divisor in

Pic(X) is mapped, by φf , to the coset represented by∏
Norm

k(Qj)/k
(f(Qj))mj

in the group on the right-hand side.

2. Proof and Discussion of Theorem 1

Throughout this section X denotes a smooth curve over a perfect field k, and k
the separable closure of k.

2.1. Preliminaries. It is worth recalling at the outset the relationship between
the points of X, and the elements of X(k). We started out by saying that a closed
point P of X corresponds to discrete valuation rings OP of k(X) containing k.
Such a point would simultaneously correspond to an orbit of elements of X(k), say
{P1, . . . , Pd}, under the action of Gal

(
k/k

)
. When convenient, we may identify the

two by writing P = {P1, . . . , Pd}. Note that the size d of the orbit corresponding
to P equals its degree |P| = [k(P) : k]. The points P1, . . . , Pd in fact correspond to
the distinct embeddings of the residue field k(P) into k. If g ∈ OP then

Norm
k(P)/k

(g(P)) =
∏

g(Pi)

where as stated before, g(P) is the image of g in k(P) := OP/mP , and the g(Pi)
have the usual meaning.
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We now come to the definition of the Picard group, Pic(X), which we reproduce
here since there is some discrepancy in the literature. Recall that we have defined
Xc to be the set of closed points of X. The divisor group of X, denoted Div(X), is
the free group on the points of Xc. The subgroup of principal divisors is denoted
by Princ(X), and we let Pic(X) := Div(X)/Princ(X). If Xk := X ×k k, then there
is a natural injection

Pic(X) ↪→ H0(Gal
(
k/k

)
,Pic(Xk)),

that is not always an isomorphism, though it often is. In particular, this natural
injection is known to be an isomorphism in the following cases (see [5, Section 3]):

• when k is a local field and X possesses a k-rational divisor of degree 1.
• when k is a number field and, for every prime υ of k, the corresponding

curve Xυ = X ×k kυ possesses a kυ-rational divisor of degree 1.

It follows in these cases that the degree 0 part of the Picard group, Pic0(X), can
be identified with JX(k), where JX is the Jacobian of the curve X. Although it is
useful to be aware of this, we do not make any such assumption in this paper.

We now come to discuss the notation and tools needed for the proof of Theorem
1. By the support of a divisor

∑
mjQj we mean the set {Qj : mj 6= 0}. We

say that a divisor is coprime to a set of points S if its support is disjoint from
S. The support of a non-constant function h ∈ k(X) is the support of its divisor.
If h ∈ k(X) is a non-constant function, and

∑
mjQj is a divisor coprime to the

support of h then we define

h
(∑

mjQj

)
:=
∏

Norm
k(Qj)/k

(h(Qj))mj .

Recall the identification made above between closed points of X and orbits of
elements of X(k) under the action of Gal

(
k/k

)
. One immediately sees that this

definition of h(
∑
mjPj) is in harmony with the usual definition found elsewhere

(for example [7, page 37] or [8, page 43]). Before proving Theorem 1 we need to
recall Weil’s reciprocity.

Weil’s Reciprocity. Suppose X is a smooth curve over a perfect field k, and
h1, h2 ∈ k(X) are non-constant functions having disjoint supports. Then

h1(div(h2)) = h2(div(h1)).

See [7, page 37], or [8, page 43].

2.2. Proof of Theorem 1. Let S be the support of f . We let Div(X)S be the
subgroup of Div(X) of divisors coprime to S. Define a map

(3) Div(X)S → k∗/Gf (k)

sending
∑
mjQj to the coset represented by f(

∑
mjQj). Clearly this map is a

homomorphism. Now let Princ(X)S be the subgroup of principal divisors coprime
to S; thus

Princ(X)S := Div(X)S ∩ Princ(X).

We first show that Princ(X)S is contained in the kernel of the homomorphism (3).
Thus suppose g ∈ k(X) is a non-constant function such that div(g) ∈ Princ(X)S .
Clearly f, g have disjoint support. The map in (3), sends div(g) to the coset
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represented by f(div(g)) in k∗/Gf (k), and hence to show that div(g) is in the
kernel it is sufficient to show that f(div(g)) ∈ Gf (k). We observe that

f(div(g)) = g(div(f)) (By Weil’s reciprocity)

= g

( ∑
P∈Xc

ordP(f)P

)
=
∏
P∈Xc

Norm
k(P)/k

(g(P))ordP(f)

However, Normk(P)/k(g(P)) is in Normk(P)/k(k(P)∗), and it immediately follows
that f(div(g)) is in Gf (k) :=

∏
P∈X Normk(P)/k(k(P)∗)ordP(f), and so div(g) is in

the kernel of the map (3). We thus obtain an induced homomorphism

Div(X)S/Princ(X)S → k∗/Gf (k),

sending the class of a divisor
∑
mjQj that is coprime to S to the coset on the

right-hand side represented by f(
∑
mjQj) =

∏
Normk(Qj)/k(f(Qj))mj . The proof

of Theorem 1 is complete upon observing that the obvious injection

Div(X)S/Princ(X)S ↪→ Pic(X)

is indeed an isomorphism. This follows from the fact, proven by Lang, that any
divisor class containing a k-rational divisor also contains a k-rational divisor whose
support is disjoint from a given finite set1 (see [3, page 166]).

2.3. A discussion of Theorem 1. It is appropriate to make some remarks re-
garding the proof of Theorem 1.

(1) The proof of Theorem 1 is similar to Schaefer’s proof of his [6, Lemma 2.1];
the main difference is the replacement of q-th powers by norms.

(2) Moving the divisor in its class so as to avoid the ‘bad set’ is a standard
device in algebraic geometry; compare the above proof to the construction
of the intersection pairing Pic(X)×Pic(X) → Z for a surface (see [2, page
357]), and to the construction of the pairing Pic(X) × Br(X) → Br(k) for
a curve (see [4]). As far as we are aware, Schaefer was the first to apply
this to the construction of descent maps. The older approach used patching
arguments, and extending these to work in our situation would have been
infinitely troublesome, if not outright impossible!

(3) We have taken the domain of our map φk to be Pic(X) where as in descent
maps the domain is usually JX(k) (after making suitable assumptions to
identify this with Pic0(X); see page 3).

2.4. An Example. It is a good idea to give an example to show how Theorem 1
extends descent maps even when we restrict the domain to Pic0(X). Let X be the
elliptic curve (over Q) given by the Weierstrass equation

X : y2 = x3 + ax+ b.

1This is in fact an easy consequence of the weak approximation theorem for function fields. To
see this suppose that

P
mjQj is a divisor and that we want to find an equivalent divisor avoiding

the finite set S. By the weak approximation theorem (see [9, page 11]) there exists a function
h ∈ k(X) such that ordQj

(h) = mj for all j and ordQ(h) = 0 for any Q ∈ S that is not one of

the Qj . Then −div(h) +
P

mjQj avoids S and is equivalent to
P

mjQj .
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We denote the point at infinity by O, and take f = x. Theorem 1 defines a
homomorphism φx : Pic(X) → Q∗/Gx(Q). Now the map X(Q) → Pic0(X) given
by P 7→ [P − O] is an isomorphism (where X(Q) has the usual group law). Thus
composing with φx we obtain a homomorphism

ψ : X(Q) → Q∗/Gx(Q)

given by
ψ(P ) = x(P )Gx(Q)

for P 6= O and x(P ) 6= 0 (it is not hard to show that φx([O]) = 1 · Gx(Q)). It
remains to compute Gx(Q), and there are three cases:
Case 1: b = 0. The divisor of x is just 2(0, 0)−2O. Both points in the support of the
divisor have residue field Q. HenceGx(Q) = Q∗2, and the map ψ : X(Q) → Q∗/Q∗2

is the usual one arising from the descent via 2-isogeny.
Case 2: b 6= 0, b ∈ Q∗2, say b = c2. The divisor of x is (0, c) + (0,−c)− 2O. The
residue fields are all Q again, but this time Gx(Q) = Q∗ and so the map ψ = 1.
Case3: b 6= 0, b /∈ Q∗2. The divisor of x is (0,

√
b) + (0,−

√
b) − 2O. We find

that Gx(Q) = Norm(Q(
√
b)∗)Q∗−2 = Norm(Q(

√
b)∗). Hence we obtain a homo-

morphism
ψ : X(Q) → Q∗/Norm(Q(

√
b)∗)

given by

ψ(P ) =
{
x(P )Norm(Q(

√
b)∗) if P 6= O,

1 ·Norm(Q(
√
b)∗) if P = O.
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