
VISIBILITY OF TATE-SHAFAREVICH GROUPS
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Abstract. These are the notes for a short course given at the
University of Warwick on 29th and 30th April 2008.

1. Weil-Châtelet groups

Let A be an abelian variety over a field K of characteristic 0. Let K
be the algebraic closure of K, and let L/K be any field extension.

Definition 1.1. A torsor (V, µ) under A is a variety V together with
a morphism µ : A× V → V (all defined over K) that induces a simply
transitive action of A(K) on V (K).

We often write V for (V, µ).

Definition 1.2. Torsors (V1, µ1) and (V2, µ2) are isomorphic over L if
there is an isomorphism ϕ : V1 → V2 defined over L such that

A× V1

µ1 //

1×ϕ
��

V1

ϕ

��
A× V2

µ2 // V2

commutes.

The trivial torsor is (A,+) where + : A× A→ A is the group law.

Lemma 1.3. Let (V, µ) be a torsor under A. Then V (L) 6= ∅ if and
only if (V, µ) ∼= (A,+) over L.

Proof: “⇐” We have 0 ∈ A(K). “⇒” Let P0 ∈ V (L). Then the
required isomorphism is ϕ : A→ V ; P 7→ µ(P, P0). �

Hence all torsors are trivial over K. We note that Aut(V, µ) = A for
any torsor (V, µ). In particular this applies to (A,+). So if ϕ : V ∼= A
is an isomorphism of torsors over K and σ ∈ Gal(K/K) then

(1) σ(ϕ) ◦ ϕ−1 = (P 7→ P + ξσ)

for some ξσ ∈ A(K). One easily checks that σ 7→ ξσ is a (continuous)
cocycle, and that changing ϕ changes it by a coboundary.
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Lemma 1.4. The map

{torsors under A}/ ∼= → H1(K,A)
(V, µ) 7→ class of (ξσ)

is a bijection.

Proof: Suppose V1 and V2 are trivialised by ϕ1 : V1
∼= A and ϕ2 :

V2
∼= A, with corresponding cocycles

σ(φ1) ◦ φ−1
1 = (P 7→ P + ξσ) and σ(φ2) ◦ φ−1

2 = (P 7→ P + ησ).

If ξσ − ησ = σ(Q)−Q for some Q ∈ A(K) then

ϕ−1
2 ◦ (P 7→ P −Q) ◦ ϕ1 : V1 → V2

is an isomorphism of torsors defined over K. This proves injectivity.
The proof of surjectivity takes more work. It uses the conditions

worked out by Weil for recognising when a variety defined over K
comes from one defined over K (variously known as “Galois descent”
or “Weil descent”). �

Definition 1.5. H1(K,A) is called the Weil-Châtelet group.

We write Vξ for the torsor determined by ξ ∈ H1(K,A).

Since H1(K,A) is a group (by adding cocycles), Lemma 1.4 shows
that the set of isomorphism classes of torsors also has a group structure.
Here are some alternative (partial) descriptions of the group law.

• (V, µ) has inverse (V, µ′) where µ′(P,X) = µ(−P,X).
• Let A act anti-diagonally on V1 × V2. Then the sum of V1 and
V2 is (V1 × V2)/A.

• If dim(A) = 1 then n[V ] = [Picn V ] for all n ∈ Z. This includes
(as the case n = 0) the fact that A is the Jacobian of V . (If
dim(A) > 1 then one should use Albanese varieties.)

2. The period-index problem

For K ⊂ L ⊂ K there is a restriction map of Galois cohomology
resL/K : H1(K,A) → H1(L,A). Let ξ ∈ H1(K,A). Then res(ξ) = 0 if
and only if Vξ(L) 6= ∅, in which case we say that “L splits ξ”.

Definition 2.1. The period of ξ is its order in H1(K,A). The index of
ξ is the greatest common divisor of the degrees of the field extensions
L/K that split ξ. (Equivalently, it is the least positive degree of a
K-rational zero cycle on Vξ.)

Lemma 2.2. If dim(A) = 1 and ξ ∈ H1(K,A) has index n then
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(1) There is a field extension L/K of degree n that splits ξ (i.e.
“the index is attained”).

(2) If K is a number field then there are infinitely many such ex-
tensions L/K.

Proof: (i) By Riemann-Roch, every K-rational divisor D on Vξ of
positive degree is linearly equivalent to an effective divisor.
(ii) Exercise. (See [6] for the case n = 2). �

Remark 2.3. It is noted in both [11] and [18] that Lemma 2.2(i) is
open for dimA > 1.

The first part of the following theorem shows that the Weil-Châtelet
group is a torsion group, i.e. every element has finite order.

Theorem 2.4 (Lang and Tate [18]). The period divides the index and
they have the same prime factors.

Proof: (i) Suppose V is trivialised by ϕ : V ∼= A, and let ξ be given
by (1). Let D =

∑n
i=1 Pi be a 0-cycle on V of degree n. Then

σ(
n∑
i=1

Pi) =
n∑
i=1

ϕ(σPi) + nξσ

for all σ ∈ Gal(K/K). It follows that if D is K-rational then nξ is a
coboundary, and hence trivial in H1(K,A).

Alternatively, we recall there is a corestriction homomorphism

cores : H1(L,A) → H1(K,A)

with the property that cores ◦ res is multiplication by [L : K].
(ii) Suppose ξ ∈ H1(K,A)[n] and p is a prime not dividing n. Let

L/K be a finite extension that splits ξ. Enlarging L if necessary we may
assume L/K is Galois. Let F be the fixed field for a Sylow-p-subgroup
of Gal(L/K). Then resF/K(ξ) ∈ H1(F,A) has period dividing n and
index a power of p. Since p does not divide n it follows by (i) that
resF/K(ξ) = 0, i.e. F splits ξ. But F/K is an extension of degree
prime to p. So p does not divide the index of ξ. �

As observed by Clark [11], the statement and proof of Theorem 2.4
carry over verbatim to Galois cohomology groups in general. Indeed
as Lang and Tate point out, their theorem is the analogue of some
previously known results for Brauer groups, cf. Br(K) = H2(K,Gm).

Next we give a bound for the index in terms of the period.

Lemma 2.5. Let ξ ∈ H1(K,A)[n]. Then
(i) ξ is split by a field extension of degree at most n2 dimA, and
(ii) the index of ξ divides n2 dimA.
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Proof: (i) Taking the long exact of Galois cohomology for the short
exact sequence

0 → A[n] → A→ A

gives the Kummer exact sequence. In particular there is a surjection
H1(K,A[n]) → H1(K,A)[n]. The first of these groups parametrises
the A[n]-torsors, and it is clear that any A[n]-torsor is split by a field
extension of degree at most #A[n] = n2 dimA. This gives the bound on
the index.

(ii) If n is a power of a prime p, then by Theorem 2.4 the index
is also a power of p. So we are done by (i). In general one looks at
the primary decomposition of H1(K,A)[n]. We leave the details as an
exercise. �

The Tate-Shafarevich group is a subgroup of the Weil-Châtelet group.

Definition 2.6. If K is a number field then

X(A/K) = ker
(
H1(K,A) →

∏
vH

1(Kv, A)
)

= {ξ ∈ H1(K,A) | Vξ(Kv) 6= ∅ for all places v}.

(For the definition as a kernel we must fix embeddings K ⊂ Kv, but
the definition is independent of these choices.)

Theorem 2.7 (Cassels [8], Lichtenbaum [19]). Let ξ ∈ H1(K,A) with
dim(A) = 1. Assume

(i) Br(K) = 0, or
(ii) K is a number field and ξ ∈ X(A/K), or
(iii) K is a p-adic field.

Then the period of ξ is equal to the index of ξ.

Proof: (Sketch.) Let G = Gal(K/K). For any smooth projective
variety V over K there is an exact sequence

0−→PicK V−→(PicK V )G−→Br(K).

If V is a torsor under A, then the index, respectively period, of V
is the least positive degree of a divisor class in PicK V , respectively
(PicK V )G. (This gives yet another proof that the period divides the
index.) Moreover if V (K) 6= ∅ then PicK V = (PicK V )G.

(i) If Br(K) = 0 then PicK V = (PicK V )G, so the result is clear.
(ii) Let [D] be any divisor class in (PicK V )G. Since Vξ(Kv) 6= 0 for

all v, the image of [D] in Br(K) is everywhere locally trivial. But by
class field theory, the natural map

Br(K) → ⊕v Br(Kv)

is injective. Hence [D] comes from PicK V .
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(iii) For each ξ ∈ H1(K,A)[n] there is a map (PicK V )G → Br(K).
Restricting to (Pic0

K
V )G = A(K) defines a pairing

A(K)/nA(K)×H1(K,A)[n] → Br(K) = Q/Z.
Lichtenbaum identifies this as the Tate pairing, which is known (by
local class field theory) to be non-degenerate. One then checks that
the image of [D] ∈ (Picn

K
V )G in Br(K) is n-torsion. So this image can

be made trivial by adding to [D] a suitable divisor class of degree 0. �

Remark 2.8. Recent work of Clark [11] gives bounds for the index in
terms of the period in the case dim(A) > 1.

3. Visibility

Let A ↪→B be an inclusion1 of abelian varieties over K.

Definition 3.1. (Mazur [13],[20]) The subgroup of H1(K,A) of ele-
ments visible in B is

VisBH
1(K,A) = ker

(
H1(K,A) → H1(K,B)

)
This definition depends not just on A and B, but also on the map

between them. Since this map is usually clear from the context, it is
safe to omit it from our notation.

The quotient of B by A is again an abelian variety, C say. This gives
a short exact sequence

0 → A→ B → C → 0

with associated long exact sequence

(2) . . .→ B(K) → C(K) → H1(K,A) → H1(K,B) → . . .

Let x ∈ C(K) map to ξ ∈ H1(K,A). Then π−1(x) is a coset of A in
B, and so a torsor under A. It represents ξ. One obvious appeal of
visibility, is that we can specify elements of H1(K,A) by writing down
(co-ordinates of) rational points on C, instead of equations for torsors
under A.

A more geometric version of Definition 3.1 is the following.

Lemma 3.2. Let (V, µ) be a torsor under A. Then (V, µ) is visible in
ιA : A ↪→B if and only if there is an inclusion of varieties ιV : V ↪→B
such that

A× V
µ //

ιA×ιV
��

V

ιV

��
B ×B

+ // B

1This means both a morphism of group varieties, and a closed immersion.
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commutes.

4. Restriction of scalars

Let L/K be a finite extension of fields. The idea of restriction of
scalars is conveyed by the following example.

Example 4.1. Let L = K(
√
d) for some d ∈ K, and let X ⊂ An be

the hypersurface defined by f ∈ L[x1, . . . , xn]. We can then write

f(u1 +
√
dv1, . . . , un +

√
dvn) = g +

√
dh

for some polynomials f, g ∈ K[u1, . . . , un, v1, . . . , vn]. The restriction
of scalars of X is ResL/K(X) = {g = h = 0} ⊂ A2n. By construction
we have X(L) = ResL/K(X)(K).

For S a scheme over K we write SL = S ×K L.

Definition 4.2. Let X be a variety over L. The restriction of scalars
ResL/K(X) is a variety defined over K representing the functor

Schemes /K → Sets
S 7→ X(SL) = HomL(SL, X)

See [4, §7.6]. We note that ResL/K(AL) is an abelian variety of
dimension [L : K] dim(A). (We are following the treatment in [1].)

Theorem 4.3. Let ξ ∈ H1(K,A). Then ξ is split by L if and only if
it is visible in A ↪→ ResL/K(AL).

Proof: (Sketch.) We recall that K ⊗K L ∼=
∏

σK where σ runs over

all K-embeddings L ↪→K. Taking points on A with co-ordinates in
this ring we obtain

ResL/K(A)(K) ∼=
∏
σ

A(K).

Keeping track of the action of Gal(K/K), it turns out we are precisely
in the situation where Shapiro’s lemma applies. This shows that the
vertical map in the following diagram is an isomorphism.

H1(K,A) //

((RRRRRRRRRRRRR
H1(K,ResL/K(AL))

∼=
��

H1(L,A).

The proof is completed by checking this diagram commutes. �
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Remark 4.4. An more geometric proof of the first implication of The-
orem 4.3 is the following. Let V = Vξ and suppose L splits ξ. Then
VL ∼= AL. Let ιV be the composite V ↪→ ResL/K(VL) ∼= ResL/K(AL).
One then checks that the hypotheses of Lemma 3.2 are satisfied for
ιA : A ↪→ ResL/K(AL).

Definition 4.5. The visibility dimension of ξ ∈ H1(K,A) is the least
dimension of an abelian variety B such that ξ is visible in A ↪→B.

Theorem 4.3 not only shows that every element of H1(K,A) is vis-
ible in some abelian variety, but also, when combined with the re-
sults of §2 gives bounds for the visibility dimension. For example, by
Lemma 2.5(i), the visibility dimension of ξ ∈ H1(K,A)[n] is at most
(dimA)n2 dimA. Moreover if dim(A) = 1 then by Lemma 2.2(i), the
visibility dimension is at most the index.

Lemma 4.6. Suppose K is a number field, and let S ⊂ H1(K,A) be
any subgroup. Then every element of S can be visualised inside the
same abelian variety B if and only if S is finite.

Proof: “⇒” We pick a finite extension Lξ/K splitting each ξ ∈ S.
Let L be the composite of these fields. Since S is finite, this is a finite
extension of K. We put B = ResL/K(A) and use Theorem 4.3.
“⇐” By (2) we see that VisBH

1(K,A) is both a quotient of C(K),
hence finitely generated by the Mordell-Weil theorem, and a subgroup
of H1(K,A), hence torsion by Theorem 2.4. Hence VisBH

1(K,A) is
finite. �

Lemma 4.6 gives an equivalent formulation of the conjecture that
the Tate-Shafarevich group is finite.

Remark 4.7. The following analogy (discussed at the end of [15]) is
worth some consideration. LetK be a number field and let a1, . . . , an be
a collection of ideals inOK generating the class group. The capitulation
problem is to find a finite extension L/K so that each of the ideals
a1OL, . . . , anOL is principal. This problem is easily solved, and the
solution is far from unique. However there is a unique solution, namely
the Hilbert class field of K, if one imposes some additional conditions
on L. Might there be corresponding additional conditions that could
be used to make the abelian variety B in Lemma 4.6 unique?

5. Some diagram chasing

Let J be an abelian variety of K. (In some of the examples J will
be the Jacobian of a curve, but we do not need to assume this now.)
It is well known (see [22]) that every abelian subvariety A ⊂ J has a
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complementary abelian subvariety B such that ∆ = A∩B is finite and
A + B = J . (There is no claim that B is unique.) Let B′ = J/A and
A′ = J/B. This gives two exact sequences. We combine them in a
commutative diagram

0
��
B

��
ψ

!!C
CC

C

0 // A //

φ   A
AA

A J //

��

B′ // 0

A′

��
0

where the diagonal maps φ and ψ are isogenies with kernel ∆.
Alternatively, we may arrive at the same set-up, by taking abelian

varieties A and B with common finite sub-K-group scheme ∆, and
then putting J = (A×B)/∆.

There is a commutative diagram with exact rows

0 // ∆ //

��

B
ψ //

��

B′ // 0

0 // A // J // B′ // 0.

Taking the long exact sequence of Galois cohomology gives

(3) B(K)
ψ //

��

B′(K) // H1(K,∆)
ιB //

ιA
��

H1(K,B)

��
A(K) // J(K) // B′(K) // H1(K,A) // H1(K, J).

Theorem 5.1. (i) Let ξ ∈ H1(K,A). Then ξ is visible in A ↪→ J
if and only if there exists η ∈ H1(K,∆) such that ιA(η) = ξ
and ιB(η) = 0.

(ii) There are exact sequences

0 → J(K)

A(K) +B(K)
→ B′(K)

ψB(K)
→ VisJ H

1(K,A) → 0

and (swapping the roles of A and B)

0 → J(K)

A(K) +B(K)
→ A′(K)

φA(K)
→ VisJ H

1(K,B) → 0.

Proof: Both parts are proved from (3) by a diagram chase. �
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Remark 5.2. Theorem 5.1(i) shows that ξ ∈ H1(K,A) is visible in
J = (A×B)/∆ if and only if it comes from B′(K) in the diagram

0 // A′(K)/φA(K) // H1(K,∆) // H1(K,A)[φ] // 0

0 // B′(K)/ψB(K) // H1(K,∆) // H1(K,B)[ψ] // 0.

6. Visibility in abelian surfaces

Theorem 6.1 (Klenke [17], Mazur [20]). Let E/K be an elliptic curve
and let ξ ∈ H1(K,E).

(i) (Klenke) If ξ has period 2 then it is visible in an abelian surface.
(ii) (Mazur) If ξ has index 3 then it is visible in an abelian surface.

The following lemma prepares for the proof of Theorem 6.1(i).

Lemma 6.2. (i) Any ξ ∈ H1(K,E) of period 2 is represented by

C =

{
q1(x1, x2, x3) = 0

q2(x1, x2, x3) = x2
4

}
⊂ P3

for some quadrics q1, q2 ∈ K[x1, x2, x3].
(ii) Let Φ = {q1 = q2 = 0} ⊂ P2. Then Φ is an E[2]-torsor and the

natural map H1(K,E[2]) → H1(K,E) sends the class of Φ to
the class of C.

(iii) The image of E[2] ⊂ Aut(Φ) ∼= S4 is the Klein 4-group.

Proof: (i) Our claim is that C embeds in P3 as an intersection of
quadrics, and that at least one of the four singular fibres in the pencil
of quadrics (defining C) is defined over K.

This statement will be clear to anyone familiar with 2-descent on
elliptic curves (as described in [9]). Since ξ has period 2, it lifts to

H1(K,E[2]) ∼= ker(L×/(L×)2
NL/K→ K×/(K×)2)

where L is the étale algebra of E[2]−{0}. If E has Weierstrass equation
y2 = f(x) then L = K[θ] = K[x]/(f(x)). To decide whether the class
of α ∈ L× comes from E(K) in the Kummer exact sequence, one must
solve the equation

x− θ = ξ(u0 + u1θ + u2θ
2)2

for (x, y) ∈ E(K) and u0, u1, u2 ∈ K. Taking coefficients of θi for
i = 1, 2 gives two quadratic equations in u0, u1, u2. These homogenise
to give equations for C ⊂ P3 of the required form.
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A more direct alternative would be to start from a 2-covering π :
C → E and embed C ⊂ P3 by the divisor π∗(0). Let A and B the 4 by
4 symmetric matrices corresponding to the quadrics defining C. There
are classical formulae (reproduced in [3], [21]) defining a morphism
ν : C → C1 = {y2 = g(x, z)} where g(x, z) = det(Ax + Bz). It may
be checked that ν takes the quotient of C by E[2], and that if P is a
ramification point for C1 → P1 then ν∗(P ) is a hyperplane section on
C ⊂ P3. Thus C1

∼= E and with this identification, the ramification
points of C1 → P1 map to the 2-torsion points of E. It follows that
g(x, z) has a linear factor defined over K, as required.

(ii) Notice that C is a double cover of the conic Γ = {q1 = 0} ⊂ P2,
ramified above the four points Φ. We must check that the action of E
on C restricts to an action of E[2] on Φ. It suffices to prove this claim
over an algebraically closed field, in which case we need nothing more
than the statement that E[2] acts on the set of ramification points for
the double cover E → P1 given by the x-co-ordinate of a Weierstrass
equation.

(iii) This is the only transitive subgroup of S4 of order 4. �

Proof of Theorem 6.1(i): Let ξ be represented by C ⊂ P3 with
equations as in Lemma 6.2(i). Since C is smooth, there are exactly 4
rank 3 quadrics in the pencil defining C. So the pencil of conics in P2

spanned by q1 and q2 has exactly 3 singular fibres. Each singular fibre
is a pair of lines, and together they make up the 6 lines of the complete
quadrilateral through the 4 points Φ.

Let P ∈ P2(K) be any rational point, not on one of the 6 lines. We
pick a new basis q′1, q

′
2 for the space of quadrics spanned by q1 and q2

so that q′1(P ) = 0. We then define

C ′ =

{
q′1(x1, x2, x3) = 0

q′2(x1, x2, x3) = dx2
4

}
⊂ P3

where d ∈ K is chosen so that C ′ has a K-rational point above P . Our
choice of P (avoiding the 6 lines) guarantees that C ′ is a smooth curve
of genus one. So its Jacobian is an elliptic curve, F say. Lemma 6.2(iii)
shows that E[2] and F [2] are isomorphic as Galois modules, equal to ∆
say. We apply Theorem 5.1(i) with A = E, B = F and η the class of
Φ in H1(K,∆). By Lemma 6.2(ii) this element η maps to the classes
of C and C ′ in H1(K,E) and H1(K,F ) respectively. The first of these
is ξ, and second is zero since C ′(K) 6= ∅. �

The proof of Theorem 6.1(ii) has exactly the same format.
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Lemma 6.3. (i) Any ξ ∈ H1(K,E) of index 3 is represented by a
plane cubic C ⊂ P2.

(ii) Let Φ ⊂ P2 be the set of points of inflection on C. Then Φ is
an E[3]-torsor and the natural map H1(K,E[3]) → H1(K,E)
sends the class of Φ to the class of C.

(iii) The image of E[3] ↪→ Aut(Φ) ∼= S9 depends on Φ, but not on C
or E.

Proof: (i) By Lemma 2.2(i) there is a K-rational divisor of degree 3
on C, and we use this to embed C ⊂ P2 as a plane cubic.

(ii) We must show that the action of E on C restricts to an action
of E[3] on Φ. It suffices to check this over K, in which case we need
nothing more than the statement that the points of inflection on an
elliptic curve in Weierstrass form are the 3-torsion points.

(iii) It suffices to check this for C in Hesse normal form:

a(x3 + y3 + z3) + bxyz = 0.

Each non-singular member of the Hesse pencil has the same set of
points of inflection, namely Φ = {x3 + y3 + z3 = xyz = 0}. Conversely
every plane cubic containing Φ belongs to the Hesse pencil. Moreover,
for each non-singular member of the Hesse pencil, the action of the
3-torsion of its Jacobian is generated by1

ζ3
ζ2
3

 and

 1
1

1

 .

�

Proof of of Theorem 6.1(ii): By Lemma 6.3(i) we can represent
ξ by a plane cubic C ⊂ P2. There are 4 singular fibres in the pencil
of plane cubics spanned by C and its Hessian. Each of these singular
fibres in the union of 3 lines. Let P ∈ P2(K) be any rational point, not
on one of the 12 lines. Let C ′ be the member of the Hesse pencil with
P ∈ C ′(K). Our choice of P (avoiding the 12 lines) guarantees that C ′

is a smooth curve of genus one. So its Jacobian is an elliptic curve, F
say. Lemma 6.3(iii) shows that E[3] and F [3] are isomorphic as Galois
modules, equal to ∆ say. We apply Theorem 5.1(i) with A = E, B = F
and η the class of Φ in H1(K,∆). By Lemma 6.3(ii) this element η
maps to the classes of C and C ′ inH1(K,E) andH1(K,F ) respectively.
The first of these is ξ, and second is zero since C ′(K) 6= ∅. �

If K is a number field, the results of Klenke and Mazur show that
every element of X(E/K) of order p = 2 or 3 is visible in an abelian
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surface. (In fact the first of these is already clear by restriction of
scalars.) So it is natural to ask the following questions.

• Let p = 2 or 3. Can all of X(E/K)[p] be visualised in the same
abelian surface?

• Are all elements ξ ∈ H1(K,E) of index n = 4 or 5 visible in an
abelian surface? If not, is it true for ξ ∈ X(E/K)?

• Is every element of H1(K,E) of period 3 visible in an abelian
surface?

The original papers of Mazur and Klenke phrase the proof of Theo-
rem 6.1 in terms of finding rational points on certain twists of the total
space for the family of elliptic curves above X(n) for n = 2, 3. In fact
they show that all relevant surfaces are birational (over K) to P2. The
surfaces for n = 4 or 5 have more interesting geometry.

In preparing these notes, I realised how to construct a counter-
example to the third of these questions. The basic idea is that the
obstruction map Ob3 : H1(K,E[3]) → Br(K), defined in [24], depends
only on the structure of E[3] as a Galois module equipped with the
Weil pairing, and not on E itself.

7. Using visibility to construct elements of X

The results in this section are due to Agashé and Stein [1]. From
now on we take K a number field. (In all the examples K = Q.)

As in §5 we let A and B be complementary abelian subvarieties of
an abelian variety J . We also put B′ = J/A and A′ = J/B.

Proposition 7.1. Let n ≥ 2 be an integer. Suppose

(i) B[n] ⊂ A ∩B and gcd(n,#B(K)tors) = 1, and
(ii) rankA(K) = 0 and gcd(n,#A′(K)tors) = 1.

Then
B(K)/nB(K) ↪→ VisJ H

1(K,A).

Proof: The first hypothesis shows that the isogeny ψ : B → B′

factors through multiplication-by-n as ψ = τ ◦ [n]. Then τ induces a
map B(K)/nB(K) → B′(K)/ψB(K). Our assumption on the torsion
of B(K) shows that this map is injective. The second hypothesis shows
that A′(K)/φA(K) is a finite group of order coprime to n. We are done
by Theorem 5.1(ii). �

Proposition 7.2. Suppose in addition to the above hypotheses that

(i) all the Tamagawa numbers of A and B are coprime to n.
(ii) J has good reduction at all places v |n.
(iii) e(Kv/Qp) < p− 1 for all places v |n.
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Then

B(K)/nB(K) ↪→ VisJ X(A/K).

Proof: (Sketch.) We recall that a cohomology class in H i(Kv,M) is
unramified if it is in the kernel of the restriction map to H i(Knr

v ,M),
whereKnr

v is the maximal unramified extension ofKv. We write A0(Kv)
for the subgroup of A(Kv) consisting of points whose reduction mod
v belong to the identity component of the special fibre of the Néron
model.

The following three facts are established in [1].

(1) The unramified subgroup of H1(Kv, A) has order equal to the
Tamagawa number cv(A) = [A(Kv) : A0(Kv)].

(2) If v -n then B0(Knr
v )

×n−→ B0(Knr
v ) is surjective.

(3) If J has good reduction at v and e(Kv/Qp) < p − 1 then
J(Knr

v ) → B′(Knr
v ) is surjective.

Assuming these facts, we complete the proof of the proposition. It
suffices to show that for each place v of K, the map π in the diagram

B(Kv)
×n //

��

B(Kv)

τ

��

//

π

''NNNNNNNNNNN
H1(Kv, B[n])

��
J(Kv) // B′(Kv) // H1(Kv, A)

is the zero map. It is clear that the image of π is killed by multiplication
by n. So by (1) and our hypothesis on the Tamagawa numbers of A,
it suffices to show that every ξ in the image of π is unramified. This
follows by (2) if v - n and by (3) if v | n. This is seen by a diagram
chase that takes place in the above diagram and its analogue with Kv

replaced by Knr
v .

Finally we note that by hypothesis (iii), n is odd. So there is nothing
to check at the infinite places. �

8. Examples

We end with a demonstration using Magma [5].

Example 1. (This is the first example in Table 1 of [13].) We start by
computing the space of modular forms of weight 2 for Γ0(681). This is
done using modular symbols, as described in [12], [26].

>M := ModularSymbols(681);
>N := NewSubspace(CuspidalSubspace(M));
>D := SortDecomposition(NewformDecomposition(N));
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The new part of the modular Jacobian J = J0(681) determines abelian
varieties of the following dimensions.

> [Dimension(x)/2: x in D];
[ 1, 1, 1, 1, 1, 6, 6, 10, 10 ]

Each conjugacy class of newforms determines both a subvariety and
a quotient of J . (These are dual abelian varieties, so equal in the case
of an elliptic curve.) We always work with the subvarieties.

> [CremonaReference(EllipticCurve(D[i])):i in [1..5]];
[ 681a1, 681b1, 681c1, 681d1, 681e1 ]
> CD := CremonaDatabase();
> E := EllipticCurve(CD,"681b1");E;
Elliptic Curve defined by y2 + xy = x3 + x2 − 1154x−
15345 over Rational Field
> F := EllipticCurve(CD,"681c1");F;
Elliptic Curve defined by y2 + y = x3 − x2 + 2 over
Rational Field

The intersection of E and F inside J0(681) can be computed using
modular symbols, as described in [2].

> IntersectionGroup(D[2],D[3]);
Abelian Group isomorphic to Z/3 + Z/3
Defined on 2 generators
Relations:

3*$.1 = 0
3*$.2 = 0

So E[3] and F [3] are isomorphic as Galois modules. (We say that E
and F are 3-congruent.)

> AnalyticRank(E);
0 1.8448
> AnalyticRank(F);
2 1.0263
> MW,MWmap := MordellWeilGroup(F);MW;
Abelian Group isomorphic to Z + Z
Defined on 2 generators (free)
> [#TorsionSubgroup(A) : A in IsogenousCurves(E)];
[ 2, 4, 4, 2 ]
> [#TorsionSubgroup(A) : A in IsogenousCurves(F)];
[ 1 ]

We can now apply Proposition 7.1 with A = E, B = F and n = 3.
It follows that F (Q)/3F (Q) ∼= (Z/3Z)2 injects into H1(Q, E). It is
natural to ask whether these might be elements of the Tate-Shafarevich
group. The value of #X(E/Q).Reg(E(Q)) predicted by the Birch–
Swinnerton-Dyer conjecture is
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> ConjecturalRegulator(E);
9.00000000000000000000000000000 0

Since E has rank 0, the regulator is 1. So there certainly should be
a copy of (Z/3Z)2 inside X(E/Q). But we still have to check local
solubility before we can be certain this is the subgroup we found. The
Tamagawa numbers of an elliptic curve are computed by Tate’s algo-
rithm.

> BadPrimes(E);
[ 3, 227 ]
> TamagawaNumbers(E);
[ 2, 2 ]
> TamagawaNumbers(F);
[ 2, 1 ]

So by Proposition 7.2 (or rather its proof) local solubility is guaranteed
at all primes, except possibly for p = 3.

We check local solubility at p = 3 by using Lemma 6.3 to write the
visible elements of H1(Q, E) as plane cubics. First we compute the
Hesse pencil of F (embedded as a plane cubic in P2 via |3.0|).

> P<t> := PolynomialRing(Rationals());
> U := GenusOneModel(3,F);U;
Genus one model of degree 3 defined over Rational Field
given by −x3 + x2z + y2z + yz2 − 2z3

> H := Hessian(U);H;
Genus one model of degree 3 defined over Rational Field
given by 4x2z−12xy2−12xyz−84xz2+4y2z+4yz2+28z3

> vecU := Vector(P,Eltseq(U));
> vecH := Vector(P,Eltseq(H));
> HessePencil := GenusOneModel(3,Eltseq(t*vecU+vecH));
> HessePencil;
Genus one model of degree 3 defined over Univariate
Polynomial Ring in t over Rational Field given by
−tx3 + (t + 4)x2z − 12xy2 − 12xyz − 84xz2 + (t + 4)y2z
+ (t + 4)yz2 + (−2t + 28)z3

Classical invariant theory give a formula (see [3]) for the Jacobian
of a plane cubic. Since the above family has a section we are really
only using this formula to re-write this family in the Weierstrass form
y2 = x3 − 27c4x− 54c6.

> c4,c6,Delta := Invariants(HessePencil);
> c4;
16t4 − 7520t3 + 1536t2 − 120320t + 14125312
> c6;
−1880t6 + 1536t5 − 451200t4 + 70688000t3 − 7219200t2 −
677425152t + 53088071680



16 TOM FISHER

Alternatively, we can compute these invariants directly from F (using
some formulae I contributed to Magma).

> DD,cc4,cc6 :=
> HessePolynomials(3,1,cInvariants(F):Variables := [t,1]);
> [c4,c6,Delta] eq [cc4,cc6,Discriminant(F)*DD∧3];
true

Can we find E in the Hesse pencil of F?

> poly := c4∧3 - jInvariant(E)*Delta;
> Roots(poly);
[ ]

Apparently not! The problem is that the isomorphism E[3] ∼= F [3]
does not respect the Weil pairing. One solution is to use the con-
travariants P,Q in place of the covariants U,H. (See [14] for details.)
An alternative, that works in this case, is to switch to a 2-isogenous
curve.

> E1 := EllipticCurve(CD,"681b4");
> flag,isog := IsIsogenous(E,E1);flag,Degree(isog);
true 2
> poly := c4∧3 - jInvariant(E1)*Delta;
> rts := Roots(poly); rts;
[ <12, 1> ]

We have now found a member of the Hesse pencil of F isomorphic to E1.
(Although so far we have only checked they have the same j-invariant.)
We pick some representatives for F (Q)/3F (Q) ∼= (Z/3Z)2

> pts := [MWmap(MW!x):x in [[1,0],[0,1],[1,1],[1,-1]]];

and compute their images under the map F (Q)/3F (Q) → H1(Q, E).

> for pt in pts do
for> print "pt =",pt;
for> D := 2*Divisor(F!0) + Divisor(pt);
for> U := GenusOneModel(Image(DivisorMap(D)));
for> U := Reduce(Minimise(U));
for> assert cInvariants(U) eq cInvariants(F);
for> H := Hessian(U);
for> vecU := Vector(Eltseq(U));vecH := Vector(Eltseq(H));
for> V := GenusOneModel(3,Eltseq(rts[1][1]*vecU + vecH));
for> V := Reduce(Minimise(V));
for> assert IsIsomorphic(Jacobian(V),E1);
for> print Equation(V);
for> assert IsLocallySolvable(Curve(V),3);
for> end for;
pt = (-1 : 0 : 1)
x3 − x2z + 7xy2 − 3xyz − 3xz2 − y3 − y2z − yz2 − 10z3

pt = (6 : 13 : 1)
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x3−4x2y−2x2z−4xy2−xyz+3xz2−3y3−4y2z+9yz2−9z3

pt = (-27/49 : -629/343 : 1)
−x3−3x2y+x2z+2xy2−5xyz−3xz2−5y3−7y2z−16yz2−8z3

pt = (0 : 1 : 1)
x3 − 4x2z + 4xy2 − 9xyz + 4xz2 − 3y3 − 3yz2 − 9z3

We have now checked local solubility at p = 3. Mazur does this in a
more high-brow way (using flat cohomology) as described in the ap-
pendix to [2].

Example 2. (This is the second example in Table 1 of [13].) We
consider the following two elliptic curve from the Cremona database.

> E := EllipticCurve(CD,"1058d1");
> F := EllipticCurve(CD,"1058c1");
> AnalyticRank(E);
0 2.4854
> ConjecturalRegulator(E);
25.0000000000000000000000000000 0

In fact E is the first elliptic curve (by conductor) with no rational
5-isogeny that is predicted to have an element of order 5 in its Tate-
Shafarevich group. Conveniently there is a rank 2 curve at the same
level (namely F ) that can be used to explain the 5-torsion in X(E/Q).
It is a mystery why accidents like this, as catalogued in [13], happen
so often.

> MW,MWmap := MordellWeilGroup(F); MW;
Abelian Group isomorphic to Z + Z
Defined on 2 generators (free)

We check for a 5-congruence by using the analogue of the Hesse family
in degree 5. (See [14] for details.)

> DD,c4,c6 :=
> HessePolynomials(5,1,cInvariants(F):Variables := [t,1]);
> poly := c4∧3 - jInvariant(E)*Discriminant(F)*DD∧5;
> rts := Roots(poly);rts;
[ <-23, 1> ]
> E1 := EllipticCurve([Evaluate(x,rts[1][1])

: x in [-27*c4,-54*c6]]);
> IsIsomorphic(E,E1);
true

We have found E in the Hesse pencil of F . So E[5] and F [5] are
isomorphic as Galois modules.

> [#TorsionSubgroup(A) : A in IsogenousCurves(E)];
[ 1 ]
> [#TorsionSubgroup(A) : A in IsogenousCurves(F)];
[ 1, 1 ]
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> BadPrimes(E);
[ 2, 23 ]
> TamagawaNumbers(E);
[ 1, 1 ]
> TamagawaNumbers(F);
[ 2, 1 ]

So by Propositions 7.1 and 7.2 the group F (Q)/5F (Q) ∼= (Z/5Z)2 in-
jects into X(E/Q). We can also give equations for these elements of
X exactly as in Example 1, by using my degree 5 analogue of the
Hessian, as described in [14]. (However, the functions to minimise and
reduce genus one models of degree 5 are not yet in Magma.)

Example 3. We start with the elliptic curves E and F where

> E := EllipticCurve(CD,"3364c1");E;
Elliptic Curve defined by y2 = x3−4062871x−3152083138
over Rational Field
> F := EllipticCurve(CD,"10092c1");F;
Elliptic Curve defined by y2 = x3−x2−42330x+3568581
over Rational Field
> AnalyticRank(E);
0 5.2106
> ConjecturalRegulator(E);
49.0000000000000000000000000000 0

In [13] the 7-torsion of X(E/Q) is listed as invisible, since E is not
congruent modulo 7 to any curve of conductor ≤ 5500 (the range of
Cremona’s tables at that time). We show that it is explained by a rank
2 curve (namely F ) with conductor 3 times that of E.

> MW,MWmap := MordellWeilGroup(F);MW;
Abelian Group isomorphic to Z + Z
Defined on 2 generators (free)

The modular forms attached to E and F are

> fE := ModularForm(E);SetPrecision(Parent(fE),15);fE;
q + 3q3 + 3q5 + 4q7 + 6q9 + q11 − 3q13 + O(q15)
> fF := ModularForm(F);SetPrecision(Parent(fF),15);fF;
q − q3 − 4q5 − 3q7 + q9 + q11 − 3q13 + O(q15)

They seem to satisfy a 7-congruence.

> function SturmBound(N)
function> ff := Factorization(N);
function> prod := &*[q∧r + q∧(r-1)

where q,r is Explode(f): f in ff];
function> return prod/6;
function> end function;
> SturmBound(10092);
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3480
> aE := TracesOfFrobenius(E,3500);
> bE := TracesOfFrobenius(F,3500);
> [i : i in [1..#aE] | (aE[i] - bE[i]) mod 7 ne 0];
[ 2 ]

From these calculations it follows (specifically by checking the condi-
tions specified in [16]) that E[7] and F [7] are equal in J0(10092).

> #IsogenousCurves(E), #IsogenousCurves(F);
1 1
> BadPrimes(E);
[ 2, 29 ]
> TamagawaNumbers(E);
[ 1, 2 ]
> TamagawaNumbers(F);
[ 1, 1, 4 ]

So by Propositions 7.1 and 7.2 the group F (Q)/7F (Q) ∼= (Z/7Z)2 in-
jects into X(E/Q).

Example 4. This is a higher dimensional example, taken from [25]
(see also [1],[2]).

> M := ModularSymbols(389);
> N := NewSubspace(CuspidalSubspace(M));
> D := SortDecomposition(NewformDecomposition(N));
> [Dimension(x)/2: x in D];
[ 1, 2, 3, 6, 20 ]
> A := D[5]; B := D[1];

So A and B are abelian varieties of dimensions 20 and 1 inside J0(389).

> WeqnB := EllipticCurve(B);WeqnB;
Elliptic Curve defined by y2 + y = x3 + x2 − 2x over
Rational Field
> CremonaReference(WeqnB);
389a1
> MW,MWmap := MordellWeilGroup(WeqnB);MW;
Abelian Group isomorphic to Z + Z
Defined on 2 generators (free)

The intersection of A and B inside J0(389) is computed using modular
symbols.

> IntersectionGroup(A,B);
Abelian Group isomorphic to Z/20 + Z/20
Defined on 2 generators
Relations:

20*$.1 = 0
20*$.2 = 0
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Reducing modulo some small primes (up to 7) gives some bounds on
#A(Q)tors and #B(Q)tors.

> TorsionBound(A,7);
97
> TorsionBound(B,7);
1

These bounds also apply to any abelian varieties isogenous to A or B.

> TamagawaNumber(A,389);
97
> TamagawaNumber(B,389);
1

The hypotheses of Propositions 7.1 and 7.2 are now satisfied with n = 5.
It follows that B(Q)/5B(Q) ∼= (Z/5Z)2 injects into X(A/Q). Since
dim(A) = 20 there is no chance of giving equations!
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