
Central simple algebras and Brauer groups

Damiano Testa
In this lecture we introduce Brauer groups. For fields the classical definition

involves equivalence classes of central simple algebras. Serre’s Séminaire Cartan,
Applications algébriques de la cohomologie des groupes. II: théorie des algèbres
simples, exp. n. 6, 7 is a clear and thorough introduction to Brauer groups.

Brauer group of a field. Let k be a field.

Definition 1. A central simple algebra over k is a finite dimensional associative
k-algebra without non-trivial two-sided ideals and whose center is the field k.

A division algebra over k is a central simple algebra over k all of whose non-zero
elements are invertible.

The easiest examples of central simple algebras are matrix algebras over k: for
any natural number n, the k-algebra Mn(k) of n × n matrices with coefficients in
k is a central simple algebra. Note that Mn(k) is not a division algebra for n ≥ 2,
since the non-zero matrices of rank at most n− 1 are not invertible.

To find an example of a division algebra (different from k!), let k = R, and let
HR be the associative R-algebra of quaternions generated by 1, i, j subject to the
usual relations

i2 = −1
j2 = −1
ij = −ji

and note that the relation (ij)2 = −1 is a consequence of the above relations.

Exercise 2. Check that HR is a division algebra.

The field R did not play a big role in the preceding example: we needed the fact
that −1 is not a square in R to find a division algebra, rather than just a central
simple algebra. This leads us to the definition of a quaternion algebra.

Definition 3. Let k be a field and let a, b ∈ k∗. Define (a, b)k to be the associative
k-algebra generated by 1, i, j subject to the relations

i2 = a
j2 = b
ij = −ji.

As in the case of the algebra HR, the relation (ij)2 = −ab follows from the
definitions.

Exercise 4. Prove that if c ∈ k∗, then the four quaternion algebras (a, b)k, (b, a)k,
(ac2, b)k, and (a, bc2)k are isomorphic.

Prove that the quaternion algebra (a2, b)k is not a division algebra.
Prove that the quaternion algebra (a, b)k is a matrix algebra if and only if the

Hilbert symbol (a, b)k equals one.

At the moment it may seem confusing to use the same notation for a quaternion
algebra and a Hilbert symbol, but we shall see that the two notions are strictly
related to one another.
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Theorem 5 (Wedderburn). Let A be a central simple algebra over k. There are
a unique division algebra D and a positive integer n such that A is isomorphic to
Mn(D).

Wedderburn’s Theorem gives a strict relation between central simple algebras
and division algebras, and suggests the introduction of the following relation.

Two central simple algebras A and B over the same field k are equivalent if
there are positive integers m,n such that Mm(A) ' Mn(B). Equivalently, A and
B are equivalent if A and B are matrix algebras over the same division algebra.
We denote the equivalence class of the central simple algebra A over k by [A], and
call it a Brauer class.

Lemma 6. Let A and B be central simple algebras over k. The associative k-algebra
A⊗k B is a central simple algebra over k.

Given any k-algebra A, we denote by Aop the k-algebra whose underlying vector
space is the same as the vector space underlying A, and whose multiplication is
defined by a ·Aop b := b ·A a, that is, multiplication in Aop is multiplication in A in
the opposite order. If A is a central simple algebra over k of dimension n, then Aop

is also a central simple algebra over k of dimension n, and A⊗k Aop ' Mn(k).
If `/k is a field extension and if A is a central simple algebra over k, then A⊗k `

is a central simple algebra over `, called the extension of A to `.
We are in a position to define the Brauer group of the field k.

Definition 7. The Brauer group Br(k) of the field k is the abelian group whose
elements are the equivalence classes of central simple algebras over k, and such that
[A] · [B] := [A⊗k B]. The identity in Br(k) is the class of the field k and the inverse
of the element [A] is the element [Aop].

If the field k is algebraically closed, then Br(k) is trivial.

Exercise 8. Prove that if k is algebraically closed, then Br(k) = (0). (Hint: It
suffices to show that there are no non-trivial division algebras over k. If D is a
division algebra over k, let d ∈ D and consider k(d).)

It follows easily from the preceding exercise that if k is any field, then for any
element [A] of Br(k) there is a finite extension `/k such that A ⊗k ` is a matrix
algebra over `. This property is sometimes stated as “any Brauer class becomes
trivial after a finite extension of the base field”.

Corollary 9. The dimension of a central simple algebra over k is a square.

Proof. Exercise. �

Exercise 10. Find an explicit isomorphism between HR ⊗R C and M2(C).

Example 11. The Brauer group of the real numbers R is 1
2Z/Z, the non-trivial

element corresponding to the algebra HR.

Note that C does not represent an element of the Brauer group of R (why?).

Exercise 12. Prove that the algebra HR has order two in Br(R). Prove also that
if (a, b)k is a quaternion algebra over a field k, then 2[(a, b)k] = 0 in the Brauer
group of k.
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Example 13. Let p be a prime number. The Brauer group of the p-adic numbers
Qp is Q/Z.

In fact, there is a canonical isomorphism invp : Br(Qp) → Q/Z, called the in-
variant at p. We denote by invR : Br(R) → 1

2Z/Z the unique isomorphism.

Exercise 14. Let v be a valuation of Q. Show that the value of the invariant at
v of the quaternion algebra (a, b)Q is equal to the Hilbert symbol (a, b)v (with the
obvious group isomorphism between {1,−1} and 1

2Z/Z).

There is a standard exact sequence

(0.1) 0 → Br(Q) →
⊕

v

Br(Qv) → Q/Z → 0

where the morphism Br(Q) → ⊕Br(Qv) is the evaluation of all the invariants and
the morphism ⊕Br(Qv) → Q/Z is the sum of all the invariants. A similar sequence
exists also for general number fields.

The sequence (0.1) shows a very important property: the local invariants of a
Brauer class satisfy a global relation. This observation gives a compatibility among
the local invariants; it is a relation that cannot be detected working with a single
prime at a time.

Brauer group of a variety. Let X be a smooth projective variety defined over
a field k. Our goal is to define a subgroup of the Brauer group of X, that contains
“concrete” elements that we can use to analyze arithmetic properties of X. The
starting point is the definition of the Brauer group of X, but we are going to do this
only vaguely, and we concentrate on more concrete algebras, called cyclic algebras.

The general set-up is as follows. The Brauer group Br(X) of X is a subgroup
of Br(k(X)), the Brauer group of the function field of X. A Brauer class α in
Br(k(X)) is a form of a matrix algebra over k(X). Choose a representative A for
the Brauer class α; thus A is a central simple algebra over k(X) such that [A] = α.
In particular it is a finite dimensional vector space over k(X) and we can choose
a basis A1, . . . , An for A. Thus the algebra A is specified by the basis A1, . . . , An

together with the “structure constants” {al
ij}i,j,l∈{1,...,n}, where al

ij ∈ k(X) are
such that

Ai ·Aj =
∑

l

al
ijAl.

Moreover, there is an open subset U ⊂ X such that all the structure constants al
ij

are regular on U , and we can “evaluate” the central simple algebra A at all points
of U . This means that we can associate to each point p ∈ U the algebra over k
with basis A1(p), . . . , An(p) and structure constants {al

ij(p)}, and this algebra is a
central simple algebra over k. The Brauer group Br(X) of X is the subgroup of
Br(k(X)) consisting of all the Brauer classes of k(X) that admit a covering of X
by open subsets U with the properties above.

Cyclic algebras. A general class of central simple algebras is the class of cyclic
algebras. Let `/k be a finite cyclic extension of fields of degree n. Given b ∈ k∗

and a generator σ of Gal(`/k), we construct a central simple algebra over k as
follows: take the “twisted” polynomial ring `[x]σ, where lx = xσ(l) for all l ∈ ` and
quotient out by the two-sided ideal generated by xn − b. This algebra is usually
denoted (`/k, b). The algebra depends on the choice of σ, though the notation does
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not show this. If X is a geometrically integral k-variety, then the cyclic algebra
(k(X`)/k(X), f) is also denoted (`/k, f); this should not cause confusion because
Gal(k(X`)/k(X)) ' Gal(`/k). More explicitly, the k-algebra (`/k, f) is also a vector
space over `, with basis 1, x, x2, . . . , xn−1 over `, and multiplication defined by

xi · xj =
{

xi+j if i + j < n
xi+j−nb if i + j ≥ n

lx = xσ(l) for all l ∈ `.

Exercise 15. Prove that quaternion algebras are cyclic algebras.

Given a smooth projective variety X defined over a field k, a Galois extension
`/k, and a divisor D on X × Spec(`), define

N`/k(D) :=
∑

g∈Gal(`/k)

g(D);

we call N`/k(D) the norm of D. The following is a criterion for testing whether or
not a cyclic algebra is in the image of the map Br(X) → Br(k(X)). For a proof,
see [?, Prop. 2.2.3] [Cor05] or [?, Prop. 4.17] [Bri02].

Proposition 16. Let X be a smooth, geometrically integral k-variety, `/k a finite
cyclic extension and f ∈ k(X)∗. The cyclic algebra (`/k, f) is in the image of
the natural map Br(X) → Br(k(X)) if and only if (f) = N`/k(D), for some D ∈
Div(X`). If k is a number field and X(kv) 6= ∅ for all valuations v of k, then
(`/k, f) comes from Br(k) if and only if we can take D to be principal.
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