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1 The Hasse principle

If a polynomial equation defined over the rational numbers has no rational
solutions, it can sometimes be very easy to prove this.

Example 1.1. The conic 22 + 3?4+ 22 =0 C ]P’(%g has no rational points. Why
not? Because it has no real points.

Example 1.2. The conic 22 + 32 = 322 C ]P’é has no rational points. For
suppose that (z,y,z) were a solution, where we may assume that x,y,z are
coprime integers. Then x2,y2, 22 would all be congruent to 0 or 1 (mod 4);
looking at the equation shows that they would all have to be 0 (mod 4), and
therefore xz, y, z all even, contradicting the assumption that they were coprime.

In both of these examples, we have proved that X (Q) = () by showing that
X(Q,) = 0 for some place v. In the first case it was v = oo, the real place.
In the second case we showed that X (Q3) was empty: the argument applies
equally well to a supposed solution over Q.

Given a variety X over a number field k£ and a place v of k, it is a finite
procedure to decide whether X (k,) is empty. Moreover, X (k,) is automatically
non-empty for all but finitely many places v, which can be determined: this
follows from the Weil conjectures. It is therefore a finite (and usually very
straightforward) process to check whether X (k,) is non-empty for all v.

For some families of varieties, this is enough to ensure that X (k) is non-
empty. For example:

Theorem 1.3 (Hasse, Minkowski). Let k be a number field, and let X C P} be
defined by one quadratic form. If X (k,) is non-empty for all places v of k, then
X (k) is non-empty.

Proof. See... O

Because of this theorem, we say that quadratic forms satisfy the Hasse prin-
ciple. Some other families of varieties are also known to satisfy the Hasse prin-
ciple: for example, Severi-Brauer varieties and del Pezzo surfaces of degree at
least 5.

In order to state results about the Hasse principle more succinctly, it will be
useful to define the set of adelic points of a variety X.

Definition 1.4. Let k be a number field. The ring of adéles of k is the restricted
direct product Ay = H/ k, with respect to the rings of integers of the k,. This



is the subring of the direct product [[, k, consisting of those elements (z,) such
that x, is an integer at all but finitely many places v. The set of adelic points
of a variety X over k is the set X (Ag) of points of X with coordinates in the
adeles of k.

Remark 1.5. The set of adelic points constists of those elements of the direct
product (P,) € [[, X (k) such that P, has coordinates which are integers in
k., for all but finitely many places v. If X is projective, then this is an equality:
X (Ay) =1], X(k,). This is because any point of projective space over k, can
be written with coordinates which are integers in k,.

Using this notation, we see that X (Ay) is non-empty precisely when all of
the X (k,) are non-empty, that is, when X is everywhere locally soluble. So X
satisfies the Hasse principle if the implication X (Ay) # 0 = X (k) # 0 holds.

If X (k) is non-empty, we can further ask whether X satisfies weak approxi-
mation:

Definition 1.6. A smooth, geometrically irreducible, projective variety X over
a number field k satisfies weak approzimation if X (k) is dense in X (A). Equiv-
alently, given any open subsets U, C X (k,) for finitely many places v, there
exists a point in X (k) lying in each U, under the embedding X (k) C X (k).

Unfortunately, not all varieties satisfy the Hasse principle.

Example 1.7 (Reichardt, Lind). The curve of genus 1 defined by the equation
2Y? = x* —172* (1)

is a counterexample to the Hasse principle over Q. In other words, this equation
has solutions in QQ, for each place v, but has no rational solution.

Proof. Clearly there are real solutions. There are also solutions in @Q, for all
p > 3 where the equation has smooth reduction modulo p, since the Hasse
bound says that any smooth curve of genus 1 over IF;, has at least p+1—-2,/p > 0
points, and any of these lifts by Hensel’s Lemma to a point over Q,. It only
remains to check the finitely many primes of bad reduction (which are 2 and
17), and in each case a point is easily found.

We now show that there can be no rational solution to . If there were, then
without loss of generality we could write it as (X,Y, Z) with XY, Z integers
and X, Z coprime, and further assume that ¥ > 0. Now, what primes may
divide Y? If ¢ is odd and ¢ | Y, then X% = 17Z* (mod ¢) and so 17 is a square
modulo g. By quadratic reciprocity, this means that ¢ is a square modulo 17.

Now 2 and —1 are also squares modulo 17, so we deduce that all primes
dividing Y are squares modulo 17, and hence so is Y. We can therefore write
Y =Y{ (mod 17). Substituting into (I)), we get that 2V = X* (mod 17) and
hence that 2 is a fourth power modulo 17. But this is not true, and so there
can be no rational solution. O

Remark 1.8. The equation is not homogeneous, so does not define a projec-
tive variety. There are two ways round this: either give the variable Y weight
2, so that the equation defines a smooth variety in a weighted projective space;
or take one affine piece, say by setting Z equal to 1, form the projective closure
of this affine curve, and then blow up to resolve the singular points at infinity.



The two procedures lead to isomorphic curves. In our case, none of this matters,
since it is immediately clear that any rational solution must have all of X,Y, Z
nonzero.

Most of the arguments in this proof are entirely local arguments: they involve
making deductions about X (Q,) for various places v. But there is one step
which is not local, and that is the use of quadratic reciprocity. The theorem of
quadratic reciprocity gives a link between behaviour at one prime and behaviour
at another prime, and so shows that the possible locations of our hypothetical
rational solution in the X (Q,) are not independent of each other. We will see
this technique repeated in the following examples.

Example 1.9 (Birch-Swinnerton-Dyer [I]). The non-singular del Pezzo surface
of degree 4 defined by the equations

uv = 2 — 5y? )
(u+v)(u+2v):x2_5z2 (2)

is a counterexample to the Hasse principle.

Proof. Let X denote this surface. We begin by showing that X has points
everywhere locally. To do this, note that the points (u,v,z,y,z) = (1 : 1 :
1:0:+/=1), (10,-10,5,5,v/5) and (5,0,0,0,v/—5) all lie on X, and that, for
any place v # 2, at least one of them is defined over Q,. As for Qq, the point
(—25,5,0,5,2y/—15) lies in X (Q2).

To show that X has no rational points, we begin by supposing that there ex-
ists a rational solution (u,v,x,y, z), where we may assume that u, v are coprime
integers (but the other coordinates need not be integers).

Firstly we look at X(Q5). « is a 5-adic integer, since otherwise uv would not
be; similarly y is a 5-adic integer. Now suppose that 5 divided uv; then 5 would
divide z, and therefore 5 would divide (u+v)(u+2v). But 5 can divide at most
one of u, v, so we have a contradiction and deduce that 5 divides neither u nor
v. Similarly, 5 divides neither (u 4 v) nor (u + 2v).

Now we use quadratic reciprocity, in the following disguise: if an integer
n can be written as n = 22 — 5y? for rational numbers z,y then any prime
p = £2 (mod 5) can divide n only to an even power. We deduce that uv (and
hence v and v individually) are only divisible by such primes to even power,
and therefore that v and v are both congruent to +1 (mod 5). Similarly, both
(u+wv) and (u+2v) are congruent to 1 (mod 5). But these statements cannot
both be true, and so no rational solution exists. O]

We conclude with one further example which, though not a counterexample
to the Hasse principle, is a counterexample to weak approximation.

Example 1.10 (Swinnerton-Dyer [3]). The singular cubic surface defined by
the equation
t(x? + %) = (42 — Tt) (2% — 2t%) (3)

has real locus with two connected components. Rational points are dense in one
component; the other contains no rational points.



Proof. To see the two connected components of the real locus, we look at the
affine piece t # 0, given by the equation

22 % = (42 — T) (2% - 2). (4)
This is the surface of revolution about the z-axis of the elliptic curve
u? = (42 — 7)(2% - 2). (5)

Since the right-hand side of this equation is positive only for |z| < /2 and
z > 7/4, these two ranges for z give two connected components of the curve,
and hence two connected components of the surface (4)).

Firstly, we will show that rational points are dense in the component z > 7/4.
The point (z9, Yo, z0) = (1, 1,2) lies in the surface. Consider the circle given by
the intersection of the surface with the plane z = zy. This is a plane conic with
a rational point, and so has an isomorphism (given by projection away from the
rational point) to }P’(b. On I%, rational points are dense in the real points; we
deduce that the same is true for the circle.

On the other hand, we can produce many more points to which this argument
can be applied. The intersection of our surface with the plane {z = y} is the
elliptic curve 2v% = (42 — 7)(2? — 2), and our point corresponds to the point
(1,2) on this curve. It turns out that the point has infinite order, and so its
multiples are dense in the real component of this curve which contains it. We
thus get a set of points of the affine surface with z-coordinates dense in
{#z > 7/4}, and so a dense set of rational points on that connected component
of the surface.

Secondly, we must prove that there are no rational solutions with |z/t| < v/2.
We may assume that z,t are coprime integers and that ¢ > 0. Multiplying the
original equation through by t gives

t(Tt — 42)(21* — 22) = (tz)? + (ty)? (6)
and, on this component, each of the left-hand terms t, 7t — 4z and 2t — 22 is
non-negative.

Quadratic reciprocity again appears in this proof in the guise of a fact about
quadratic forms: if n is a positive integer which can be written as n = z2? +
y?, then any prime congruent to 3 (mod 4) must divide n to an even power.
Applying this to (6) shows that, if p =3 (mod 4), then the power of p dividing
the left-hand side must be even. We claim that, in fact, the power of p dividing
each of t, 7t — 4z and 2t? — 22 must be even. To prove this, we must look at
their possible common factors and show that no such p can divide more than
one of them.

e Since (t,z) = 1, we have (¢,7t — 4z) = (t,4) so the only prime dividing
both ¢ and 7t — 4z can be 2.

o (t,2t> — 2%) = (t,2?) = 1 so no prime can divide both ¢ and 2t? — 22.

e Suppose that p | (7t — 42,2t> — 22) and p = 3 (mod 4). If p were to
divide z, then p would also have to divide ¢, which we have already seen
is impossible. So p divides neither ¢ nor z, but does divide (8¢ + 7z)(7t —
4z) — 28(2t% — 22) = 17tz, and therefore p = 17, but 17 =1 (mod 4).



Therefore none of ¢, 7t — 4z, 2t> — 2% is congruent to 3 (mod 4). But, if ¢
were even, then z would have to be odd, and therefore 2t — 22 = 3 (mod 4);
whereas, if ¢t were odd, then ¢ would have to be congruent to 1 (mod 4) and
therefore 7t — 42 = 3 (mod 4), giving a contradiction in either case. So there
can be no rational solutions to (€]), so none to () with ¢ # 0 and |2/t| < V2. O

2 Hilbert symbols

The Hilbert symbol is a piece of notation closely related to the Legendre symbol
for quadratic residues, which will be useful for reformulating the arguments of
the previous section in a more unified way. An excellent reference in Chapter 111
of Serre’s book [2].

Definition 2.1. Let K be a field, and let a and b be two non-zero elements of
K. We define the Hilbert symbol to be

1 if the conic az? + by? = 22 has a solution in P?(K);

(a,b)k == .
—1 otherwise.

If k is a number field and v a place of k, then we write (a,b), for (a,b), .

This slightly mysterious definition is given some algebraic meaning by the
following proposition.

Proposition 2.2. Let K be a field and a,b € K*. Then (a,b)x = 1 if and
only if a is a norm from K(v/b).

Proof. See [2| Chapter III, Proposition 1]. O

There are some useful properties of the Hilbert symbol which are true over
any field, and some further ones which are only true for local fields.

Proposition 2.3. Let K be a field. The Hilbert symbol over K has the following
properties:

1. Symmetry: (a,b)x = (b,a)k for all a,b € K*.
2. (a,c*)g =1 for all a,c € K*.

3. A weak form of bilinearity: if (a,b)x = 1 then (ad’,b)x = (a’,b) i for all
a € K*.

4. (a,—a) =1 for alla € K*.
5 (a,1—a)=1 foralla e K*\{1}.

Proof. Some of these are obvious; for the rest, see [2, Chapter III, Proposition 2].
O

Proposition 2.4. Let k be a number field. Then

1. For each place v of k, the Hilbert symbol defines a non-degenerate bilinear
form on kX /(kX)?.



2. For a,b € k>, we have

H(a7 b)v =1

v

where the product is taken over all places of k.
Proof. For k = Q, see [2, Chapter III, Theorems 2 and 3]. O

In the case £ = Q, there are simple explicit formulae giving the Hilbert
symbol for any place of Q.

Proposition 2.5. 1. Let a,b € R*. Then

1 ifa>0o0rb>0;

7bOO: ,b = .
(@,0)o0 = (a, b)r {1 ifa<0andb<0.

2. Let p be an odd prime; let a,b € Q) , and write a = p®u and b = pPv with
u,v € Z, . Write e(p) = (p — 1)/2. Then

= G ()

In particular, (u,v), =1 if u,v € .

3. Leta,b € QF and write a = 2%u and b = 2°v with u,v € Z5 . For v € Z;,
write €(x) = (x — 1)/2 and w(z) = (2% —1)/8. Then

(a,b)y = (—1)<We@)taw(®)+fuw(v)

Proof. See [2 Chapter III, Theorem 1]. O
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