
Tuesday, Lecture 2, Ronald van Luijk, rmluijk@gmail.com

Please let us know about mistakes in these notes!
Much of this lecture is directly copied from Chapter 6 of Bjorn Poonen’s notes

[6].

1. Del Pezzo Surfaces

Let k be any field and X a smooth, projective, geometrically irreducible variety
over k. Let k be an algebraic closure of k. Let ωX be the canonical sheaf on X.

Definition 1.1. The variety X is called rational if Xk is birationally equivalent to
P

n

k
for some n.

Definition 1.2. The variety X is called a Fano variety if ω
⊗(−1)
X is ample. In

other words, if −K is ample, where K is any canonical divisor.

Definition 1.3. A del Pezzo surface is a Fano variety of dimension 2. Its degree
is the self-intersection number K · K, where K is any canonical divisor.

Note that if −K is very ample, then it determines an embedding of X into P
n

for some n, under which −K corresponds to a hyperplane section H. The degree of
this embedding is H2, which explains why we call (−K)2 the degree of a del Pezzo
surface X.

Proposition 1.4. Suppose k has characteristic 0 and X is a rational surface. Then
X is k-birational to either a del Pezzo surface or a conic bundle over a conic.

In this lecture we will focus on the geometry of del Pezzo surfaces.

Proposition 1.5. The degree of a del Pezzo surface is positive.

Proof. Note that a very ample divisor H intersects every effective curve with pos-
itive intersection number, so in particular H2 > 0. Therefore, if D is any ample
divisor, so nD is very ample for some positive integer n, then 0 < (nD)2 = n2D2,
so D2 > 0. The statement now follows from the fact that −K is ample. �

Theorem 1.6. Suppose that k is algebraically closed and that X is a del Pezzo
surface. Then either X is isomorphic to P

1 × P
1, or X is the blow-up of P

2 at
distinct points P1, . . . , Pr in general position, where 0 ≤ r ≤ 8. Here general
position means that none of the following hold: (1) three of the Pi lie on a line, (2)
six of the Pi lie on a conic, (3) eight of the Pi lie on a singular cubic, with one of
these eight points at the singularity. The degree of P

1 ×P
1 is 8. If X is the blow-up

of P
2 in r points, then its degree is 9− r. Conversely, any blow-up of P

2 in at most
8 points in general position is a del Pezzo surface.

Proof. The fact that X is isomorphic to P
1 × P

1 or P
2 blown up at r ≤ 8 points is

proven for instance in [4], Thm. 24.4. The first two conditions of general position
are also proved there. The third condition is [4], Thm. 26.2 and Rem. 26.3. The
degrees are easy to compute. For the converse, see [1], Thm. 1. �

The full proof of Theorem 1.6 is not very deep, but too long to present in this
hour. Instead we will break up the proof in parts, which will show that assuming
parts of the conclusion, we can prove the rest fairly easily. The following proposition
therefore reclaims only part of the previous theorem.
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Proposition 1.7. Suppose that k is algebraically closed and that X is a del Pezzo
surface. Then either X is isomorphic to P

1 × P
1, or X is the blow-up of P

2 at
distinct points P1, . . . , Pr.

Proof. See [4], Thm. 24.4. �

For the rest of this lecture, let X be a del Pezzo surface with canonical divisor
K.

Proposition 1.8. Suppose X̃ = BlP (X) is the blow-up of a smooth surface X at a

point P , with corresponding map π : X̃ → X. Let KX and KX̃ be canonical divisors

on X and X̃ respectively and let E denote the exceptional curve on X̃ above P . Then
E is isomorphic to P

1, and KX̃ is linearly equivalent with π∗KX + E. Moreover,

the map ρ : Pic X ⊕ Z → Pic X̃ sending (D,n) to π∗D + nE is an isomorphism.
We have E2 = −1, and for all C,D ∈ Pic X we have (π∗C) · (π∗D) = C · D and
(π∗C) · E = 0. In particular, we have KX̃ · E = −1.

Proof. See [3], Propositions V.3.1-3. �

Exercise 1. Suppose the setting of Proposition 1.8. Assume that you already know
E2 = −1. Prove that the map ρ is an isomorphism. (Hint: use that leaving out a
closed subset of codimension 2 does not change the Picard group, while leaving out
an irreducible closed subset of codimension 1 gives an exact sequence you have seen
before.) Now also prove the rest of the theorem.

Corollary 1.9. If the del Pezzo surface X is the blow-up of P
2 at distinct points

P1, . . . , Pr, then r ≤ 8 and the degree of X equals 9 − r.

Proof. The canonical divisor KP2 on P
2 is linearly equivalent to −3L where L is any

line, so K2
P3 = 9L2 = 9. The degree follows from Proposition 1.8. From Proposition

1.5 we find 9 − r > 0, so r ≤ 8. �

Proposition 1.10. If C is a closed integral curve on X, then C2 ≥ −1. Further-
more, equality implies pa(C) = 0 and KX · C = −1.

Proof. The adjunction formula gives C2+C ·K = 2pa(C)−2 ≥ −2, while C ·K < 0
since −K is ample. �

If we have C2 = −1, then by Proposition 1.10, the integral curve C can be blown
down, so we call C an exceptional curve.

Proposition 1.11. Suppose Y is the blow-up of P
2 in r distinct points, exactly s

of which lie on the line L. Then the strict transform of L on Y has self-intersection
L2 = 1 − s.

Proof. Let π : Y → P
2 denote the blow-up. Let E1, . . . , Es denote the exceptional

curves above the s points on L. Let L′ denote the strict transform of L on Y . Then
π∗L = L′+

∑s

i=1 Ei, so 1 = L2 = (π∗L)2 = (L′+
∑

Ei)
2 = L′2+2

∑
L′·Ei+

∑
E2

i =
L′2 + 2s − s, so L′2 = 1 − s. �

Corollary 1.12. If the del Pezzo surface X is the blow-up of P
2 in r points, then

no three of these points are colinear.

Proof. Follows from Propositions 1.11 and 1.10. �
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Exercise 2. Show that if the del Pezzo surface X is the blow-up of P
2 in r points,

then no six of them lie on a conic.

Exercise 3. Show that if the del Pezzo surface X is the blow-up of P
2 in 8 points,

then they do not lie on a singular cubic that has its singularity at one of the 8
points.

The conditions of Corollary 1.12 and Exercises 2 and 3 together are summarized
by saying that the r points must be in general position. Conversely, one can show
that if r ≤ 6 points on P

2 are in general position, then the blow-up of P
2 in those

points is indeed a del Pezzo surface (see [4], Thm. 24.5). For r = 6 we get the
famous cubic surfaces in P

3, see [3], section V.4. For r = 7 or r = 8, life gets
significantly more complicated because then the anticanonical sheaf is no longer
very ample, just ample (c.f. [4], Rem. 26.3). For a proof that even in this case, the
converse mentioned in Theorem 1.6 is still true, see [1], Thm. 1.

If X is the blow-up of P
2 in r ≤ 8 points, then Proposition 1.11 states that the

strict transform of the line through any two of the points is an exceptional curve.
The following exercise gives more exceptional curves.

Exercise 4. Suppose X is the blow-up of P
2 in r ≤ 8 points P1, . . . , Pr in general

position. Then the strict transforms of the following curves in P
2 are all exceptional

curves:

(1) a line through 2 of the Pi,
(2) a conic through 5 of the Pi,
(3) a cubic passing through 7 of the Pi such that one of them is a double point

(on that cubic),
(4) a quartic passing through 8 of the Pi such that three of them are double

points,
(5) a quintic passing through 8 of the Pi such that six of them are double points,
(6) a sextic passing through 8 of the Pi such that seven of them are double

points and one is a triple point.

Note that all these curves satisfy (−K) · C = 1, so if −K is very ample, i.e.,
r ≤ 6, then under the embedding into P

n that it determines, all these exceptional
curves correspond to lines. Together with the fibers above the points blown up,
the curves described in this exercise are in fact an exhaustive list of all exceptional
curves on X (see [4], Thm. 26.2). Proving this requires a better understanding of
the Picard group of X, which we will work on next.

Proposition 1.13. Suppose X is the blow-up of P
2 in r ≤ 8 points P1, . . . , Pr in

general position. Let Ei denote the exceptional curve above Pi and let L denote
the pull back of a line in P

2. Then Pic X is generated by L and the Ei, with
−KX ∼ 3L−

∑
Ei. The intersection numbers are given by L2 = 1, L ·Ei = 0, and

Ei · Ej = −δij.

The intersection pairing turns the Picard group into a unimodular lattice of
signature (1, r). In particular this means that if we know a divisor up to numeri-
cal equivalence, then we know its divisor class. This will prove extremely useful in
studying not only the geometry of the surface, but also the arithmetic. For instance,
we get a representation of the absolute Galois group Gal(k/k) into the automor-
phism group of this lattice. Better yet, since the class [K] is fixed under galois, we
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get a representation into the automorphism group of the orthogonal complement
of [K], which is a root lattice and subject of the next lecture.

Proposition 1.14. Suppose C is an integral curve on X satisfying C2 = −1. Then
there is no other effective divisor D that is linearly equivalent to C.

Proof. Suppose D is an effective divisor that linearly equivalent to C. If D does not
have C in its support, then D and C intersect in finitely many points, so D ·C ≥ 0,
which contradicts D·C = C2 = −1. We conclude that D does have C in its support,
so D − C is an effective divisor that is linearly equivalent to 0, so D − C = 0 and
D = C. �

Proposition 1.14 is often phrased by saying that curves with negative selfinter-
section do not move.

We have already seen that if C is an integral curve on X with C2 = −1, then
we also have (−K) ·C = 1, so by the adjunction formula we have pa(C) = 0 and so
C is an exceptional curve. We now also define the notion of an exceptional divisor
class, namely as a class D satisfying D2 = −1 and (−K) ·D = 1. Every exceptional
curve represents an exceptional divisor class and Proposition 1.14 states that every
exceptional divisor class contains at most one exceptional curve. In fact, a stronger
statement is true.

Proposition 1.15. Every exceptional divisor class contains exactly one exceptional
curve.

Proof. Let D be any divisor in an exceptional divisor class. Note that for rational
surfaces we have χ(OX) = 1. Therefore, Riemann-Roch on surfaces gives

h0(L(D)) − h1(L(D)) + h0(L(K − D)) =
1

2
D · (D − K) + 1 + pa(X) = 1.

From (−K) · (K − D) = −K2 − 1 < 0 we see that no effective divisor is linearly
equivalent to K − D, so h0(L(K − D)) = 0 and we get h0(L(D)) ≥ 1, which
implies that there is indeed an effective divisor D′ that is linearly equivalent to D.
Since (−K) intersects every irreducible curve in the support of D positively, and
(−K) ·D = 1, we see that D is irreducible, and therefore an exceptional curve. By
Proposition 1.14 it is the only exceptional curve in the class. �

Proposition 1.16. Suppose the del Pezzo surface X is the blow-up of P
2 in r ≤ 8

points P1, . . . , Pr in general position. Then the fibers above the Pi and the curves
in Exercise 4 are exactly all the exceptional curves on X.

Proof. By Proposition 1.15 it suffices to count the number of exceptional divisor
classes in the Picard lattice. As every divisor class is uniquely represented by
D = aL −

∑r

i=1 biEi for some a and bi, we are counting the solutions to the
equations 1 = D · (−K) = 3a −

∑
bi and −1 = D2 = a2 −

∑
b2
i . Setting b0 = 1

for convenience, the first equation becomes 3a =
∑r

i=0 bi, under which the second
becomes equivalent to

∑
i(a−3bi)

2 = 18. This clearly gives finitely many solutions,
all of which can be enumerated easily. �

Exercise 5. Determine the number of exceptional curves on a del Pezzo surface of
degree d for each d (getting two possibilities for degree 8).
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