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1 Definitions

Let X be a smooth, geometrically irreducible variety over a field k. Recall
that the defining property of an Azumaya algebra A is that, for any field K
containing k and any point P € X (K), we can evaluate A at P to get a central
simple algebra A(P) over K.

In particular, suppose that k is a number field. Then, for each place v of k,
we can evaluate A at points of X (k,) to get central simple algebras over k,,. In
this way we obtain a map

X (k,) Brk, = Q/Z. (1)

Proposition 1.1. The map s continuous, and hence locally constant, for
the real, complex or p-adic topology, as appropriate, on X (k).

Proof. 1 need to find a reference for this. O
Recall that the set of adelic points X (Ax) of X is simply the direct product
[1, X (k). Adding together all the local maps (1)), we obtain a continuous map
>, invy
X(Ay) » @ Brk, =— Q/L. (2)
By using a direct sum instead of a direct product for the middle term above,
we are implicitly stating the following result:

Proposition 1.2. Let X be a smooth, geometrically irreducible variety over a
number field k, and let A € Br X be an Azumaya algebra on X. Then, for all
but finitely many places v, we have A(P) =0 € Brk, for all P € X(k,).

Proof. See [3, p. 101]. O

Proposition 1.3. If A € Br X lies in the image of the natural map Brk —
Br X, then the associated map S zero.

Proof. This is a restatement of (?7). O

The following observation is key to the definition of the Brauer—Manin ob-
struction.



Proposition 1.4. Let X be a smooth, geometrically irreducible variety over a
number field k, and consider X (k) as a subset of X(Ay) under the diagonal
embedding. Let A be an Azumaya algebra on X. Then X (k) lies in the kernel

of the map .
Proof. 1t is straightforward to check that the following diagram commutes:

X(k) —— X(Ag)

A [ g

Brk —— @,Brk, =2 Q/z

where the vertical arrows are evalution of A at points; the top horizontal arrow is
the inclusion of X (k) in X (Ay); and the bottom line is the exact sequence (?7?).
The composite map from X (Ay) to Q/Z is the map of (2). The proposition
follows immediately from the exactness of the bottom row. O

With this in mind, we make the following definition.

Definition 1.5. Let X be a smooth, geometrically irreducible variety over a
number field k, and let A € Br X be an Azumaya algebra on X. Define

X (A = {(P,) € X(Ax) | > inv, A(P,) = 0}.

If B is a subset of Br X, similarly define

X (AR)P = {(P,) € X(Ag) | Y inv, A(P,) =0 for all A€ B}.

One way to look at this is as follows: the maps define a pairing X (Ay) x
Br X — Q/Z, and we have defined X (A,)” to be the subset of X (Aj) orthogonal
to the set B under this pairing.

Remark 1.6. In view of Proposition[L.3] this pairing is actually still defined when
Br X is replaced by Br X/ Brk (meaning the quotient of Br X by the image of
Brk). In many of the cases which interest us, Br X/ Br k will be a finite group,
and it will be possible to calculate X (A;)B*X explicitly.

Proposition states that X (k) C X(A;)P for any subset B of Br X. In
particular, if X(A;)P is empty, then X (k) is also empty.

Definition 1.7. Let X be a smooth, geometrically irreducible variety over a
number field k. Let B be a subset of the Brauer group of X. If X (Ay) is not
empty but X (Az)? is empty, then we say there is a Brauer—Manin obstruction
to the Hasse principle on X coming from B. If X (A)P is strictly contained in
X (Ay), we say that there is a Brauer—Manin obstruction to weak approximation
on X coming from B. If B = Br X, we simply say that there is a Brauer—Manin
obstruction to the Hasse principle or to weak approximation on X.

The reason that this is such a useful definition is that the sets X (A;)* are
often explicitly computable; for certain classes of varieties, we can even compute
the set X (Ap)B*X effectively.



Proposition 1.8. Let X be a smooth, geometrically irreducible, projective va-
riety over a number field k, and let A € Bry X. Then there is an effective
procedure to compute X (Ay)A.

Proof. See [2, Section 9]. O
In some cases we can go much further:

Proposition 1.9. Let X be a smooth, geometrically irreducible, projective va-
riety over a number field k. Suppose that Pic X is free and finitely generated,
and that we are explicitly given a finite set of divisors which generate Pic X,
together with the relations between them and the Galois action on them. Then
there is an effective procedure to compute X (A )P X.

Proof. See [2| Theorem 3.4]. O

2 Examples

Example 2.1 (Birch-Swinnerton-Dyer [I]). Let X be the non-singular del
Pezzo surface of degree 4 defined by the equations (??), and let A be the quater-

nion algebra
A= <57 u>
u+v

over k(X). Then A is an Azumaya algebra on X, and there is a Brauer—-Manin
obstruction to the Hasse principle on X coming from A.

Proof. 1t will be shown in the next chapter ?? that, to prove that A is an
Azumaya algebra, it is enough to check that the principal divisor (u/(u + v))
is the norm of a divisor defined over Q(v/5). This is precisely the verification
carried out for the last part of Exercise 77.

Dividing both sides of the first equation by v?, we see that

2t —by? z+ /5y
u/v=—5—=Nowsyo| =

is a norm from Q(+v/5), and so by ?? the algebra (5,v/(u +v)) is isomorphic to
A. In a similar way, we get the following four quaterion algebras over x(X), all
isomorphic:

u v u v
A_<5’u+v>’ <5’u—|—v>7 (5’u—|—2v)’ <5’u+2v>' )

We will describe the map X(Q,) — Q/Z, given by P + inv, A(P), sepa-
rately for each place v.

For v = oo the real place, notice that 5 is positive and hence a square in R;
thus A(P) = (5,u(P)/(u(P)+v(P))) is a trivial algebra and inve, A(P) = 0, at
least for all P € X (R) where u(P) and u(P)+v(P) are non-zero. Since the map
P — inve A(P) is continuous on X (R), it follows that it is zero everywhere.

If v is an odd prime p such that 5 is a square in @@, then the same argument
works and shows that inv, A(P) =0 for all P € X(Q,).




Now suppose that v is an odd prime p # 5, such that 5 is not a square in @Q,
and therefore not a square in F,,. In this case, v and v can never be both zero at
a point of X (F,), since otherwise z/y and x/z would be square roots of 5 in F,,.
Similarly, v + v and w + 2v are never both zero at a point on X (F,). It follows
that, for each P € X(Q,), at least one of the isomorphic algebras is clearly
of the form (5,b) with b € Z;, and therefore inv;, A(P) = 0 by Proposition ??.

Next, consider the case v = 2. At first glance the previous argument will
not work: since P = (0:0:1:1:1) € X(F;), it would appear that u and v
can both be even at a point of X (Q3). But it turns out that P does not lift
to a point of X (Q2), as can be seen, for example, by looking at the equations
modulo 16. So once again, for each P € X(Q2), one of u, v is odd, and similarly
one of (u + v),(u + 2v) is odd. The formula of Proposition ?? shows that
(5,b)2 = 1 whenever b is odd, so once again we conclude that invy A(P) = 0 for
all P € X(Q2).

Finally, we look at v = 5. Modulo 5, the variety X reduces to a union of
four planes, meeting in a common line; two of these planes are defined over [F5
and the other two are quadratic and conjugate. The two defined over F5, which
therefore contain all the points of X (F5), are {u = v = 2} and {u =v = —z}.
The line of intersection of these planes is {u = v = = 0}, but no point here
lifts to a point of X (Qj5). Therefore every point of X (Qs) satisfies u = v = +x
(mod 5) with w,v,z € Z. This means that u/(u + v) = 3 (mod 5), and the
formula of Proposition ?? gives (5,3)5 = —1, meaning that invs A(P) = % for
all P € X(Qs).

To summarise, we have proved that inv, A(P) = 0 for all P € X(Q,) where
v # 5, and that inv, A(P) = % for all P € X(Q5). It follows that

. 1
> inv, A(P,) = 5 forall (P) € X (Ag) = [[x@.).

v

So X (Ag)* = (), and therefore there is a Brauer-Manin obstruction to the Hasse
principle on X. O

Remark 2.2. Although our representative quaternion algebras all had prob-
lems when v = v = 0, it turned out that we never needed to evaluate them at
such a point. In fact we could have found other isomorphic quaternion algebras,
extending our set to a set which could be easily evaluated at any point of
any X (Q,); this is a consequence of the fact that A is Azumaya.

We conclude by showing that the phenomenon of Example 7?7 can also be
explained by the Brauer—-Manin obstruction.

Example 2.3. Let X be the singular cubic surface (?7), and let A be the
quaternion algebra over k(X)) defined by

4z — Tt
ac (8T,

Then A is an Azumaya algebra on X, and there is a Brauer—Manin obstruction
to weak approximation on X coming from 4, which explains why one connected
component of X (R) contains no rational points.




Remark 2.4. We have not defined what an Azumaya algebra is on a singular
variety. In this particular case, it is straightforward to check that A is an
Azumaya algebra away from the singular points of X, and this is enough for
our purposes.

Proof. The two singular points of X are (44 : 1 : 0 : 0) where i> = —1. Let
U denote the complement in X of these two points. Any rational points of X
must be contained in U, since neither of the singular points are rational.

As before, we start by finding alternative ways of writing the quaternion
algebra A. Firstly, note that by looking at the defining equations of X we can
see that

4z =Tt x® 4 y® + 8zt — 1447

t 22
as functions on X, immediately giving a new way of writing A. Furthermore,
since the denominator 22 is a square, we can replace it with any other square
such as 22, y2 or 2 to get new quaternion algebras isomorphic to A. Also, the
defining equations show easily that the algebra (—1, (22 — 2¢?)/t?) is isomorphic
to A, and again the denominator here may be replaced by any square. In this
way we find a set of isomorphic algebras which can be evaluated at any point
of U.

Now consider each place separately. If p = 1 (mod 4) then —1 is a square
in Qp, and so inv, A(P) = 0 for all P € U(Q,). If p = 3 (mod 4) then a
similar argument to the previous example shows that, for each P € X(Q,),
one of our algebras always evaluates to (—1,b) with b € Z1, and therefore that
inv, A(P) =0 for all P € X(Q,).

For v = 2, notice that (4z — 7t)/t = 1 (mod 4), and that (—1,b)s = 1
whenever b =1 (mod 4), so again invy A(P) =0 for all P € X(Q3).

Finally, for v = oo, we see that (4z —7t)/t is non-negative on one component
of X(R), and strictly positive on a dense open subset of that component, so
inveo A = 0 on that component. On the other component, however, (4z —
Tt)/t is strictly negative on a dense open subset, and therefore inv,, A = %
on that component. We deduce that rational points can only be found in the
component where (4z — 7t)/t > 0, giving a Brauer-Manin obstruction to weak
approximation on X. O
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